Suppr超能文献

用于中心对称结构整数极小原理的多项式时间算法。

Polynomial-time algorithms for the integer minimal principle for centrosymmetric structures.

作者信息

Vaia Anastasia, Sahinidis Nikolaos V

机构信息

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.

出版信息

Acta Crystallogr A. 2005 Jul;61(Pt 4):445-52. doi: 10.1107/S010876730501648X. Epub 2005 Jun 23.

Abstract

The minimal principle for structure determination from single-crystal X-ray diffraction measurements has recently been formulated as an integer linear optimization model for the case of centrosymmetric structures. Solution of this model via established combinatorial branch-and-bound algorithms provides the true global minimum of the minimal principle while operating exclusively in reciprocal space. However, integer programming techniques may require an exponential number of iterations to exhaust the search space. In this paper, a new approach is developed to solve the integer minimal principle to global optimality without requiring the solution of an optimization problem. Instead, properties of the solution of the optimization problem, as observed in a large number of computational experiments, are exploited in order to reduce the optimization formulation to a system of linear equations in the number field of two elements (F(2)). Two specialized Gaussian elimination algorithms are then developed to solve this system of equations in polynomial time in the number of atoms. Computational results on a collection of 38 structures demonstrate that the proposed approach provides very fast and accurate solutions to the phase problem for centrosymmetric structures. This approach also provided much better crystallographic R values than SHELXS for all 38 structures tested.

摘要

最近,单晶X射线衍射测量结构确定的最小原理已被表述为中心对称结构情况下的整数线性优化模型。通过既定的组合分支定界算法求解该模型,可在仅在倒易空间中操作的同时,提供最小原理的真正全局最小值。然而,整数规划技术可能需要指数级的迭代次数来穷尽搜索空间。本文开发了一种新方法,无需求解优化问题即可将整数最小原理求解到全局最优。相反,利用在大量计算实验中观察到的优化问题解的性质,将优化公式简化为二元数域(F(2))中的线性方程组。然后开发了两种专门的高斯消元算法,以在原子数的多项式时间内求解该方程组。对38个结构的集合进行的计算结果表明,所提出的方法为中心对称结构的相位问题提供了非常快速和准确的解。对于所有测试的38个结构,该方法还提供了比SHELXS更好的晶体学R值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验