Wang Hong-Qiang, Huang De-Shuang
Intelligent Computation Lab, Hefei Institute of Intelligent Machines, Chinese Academy of Science, P.O. Box 1130, 230031, Hefei, Anhui, China.
Biotechnol Lett. 2005 Apr;27(8):597-603. doi: 10.1007/s10529-005-3253-0.
A novel gene selection algorithm based on the gene regulation probability is proposed. In this algorithm, a probabilistic model is established to estimate gene regulation probabilities using the maximum likelihood estimation method and then these probabilities are used to select key genes related by class distinction. The application on the leukemia data-set suggests that the defined gene regulation probability can identify the key genes to the acute lymphoblastic leukemia (ALL)/acute myeloid leukemia (AML) class distinction and the result of our proposed algorithm is competitive to those of the previous algorithms.
提出了一种基于基因调控概率的新型基因选择算法。在该算法中,建立了一个概率模型,使用最大似然估计方法来估计基因调控概率,然后利用这些概率来选择与类别区分相关的关键基因。在白血病数据集上的应用表明,所定义的基因调控概率能够识别出与急性淋巴细胞白血病(ALL)/急性髓细胞白血病(AML)类别区分相关的关键基因,并且我们所提出算法的结果与先前算法的结果具有竞争力。