Császár Attila G, Czakó Gábor, Furtenbacher Tibor, Tennyson Jonathan, Szalay Viktor, Shirin Sergei V, Zobov Nikolai F, Polyansky Oleg L
Department of Theoretical Chemistry, Eötvös University, H-1518 Budapest 112, P.O. Box 32, Hungary.
J Chem Phys. 2005 Jun 1;122(21):214305. doi: 10.1063/1.1924506.
Equilibrium structures are fundamental entities in molecular sciences. They can be inferred from experimental data by complicated inverse procedures which often rely on several assumptions, including the Born-Oppenheimer approximation. Theory provides a direct route to equilibrium geometries. A recent high-quality ab initio semiglobal adiabatic potential-energy surface (PES) of the electronic ground state of water, reported by Polyansky et al. [ ibid. 299, 539 (2003)] and called CVRQD here, is analyzed in this respect. The equilibrium geometries resulting from this direct route are deemed to be of higher accuracy than those that can be determined by analyzing experimental data. Detailed investigation of the effect of the breakdown of the Born-Oppenheimer approximation suggests that the concept of an isotope-independent equilibrium structure holds to about 3 x 10(-5) A and 0.02 degrees for water. The mass-independent [Born-Oppenheimer (BO)] equilibrium bond length and bond angle on the ground electronic state PES of water is r(e) (BO)=0.957 82 A and theta e (BO)=104.48(5) degrees , respectively. The related mass-dependent (adiabatic) equilibrium bond length and bond angle of H2 (16)O is r(e) (ad)=0.957 85 A and theta e (ad)=104.50(0) degrees , respectively, while those of D2 (16)O are r(e) (ad)=0.957 83 A and theta e (ad)=104.49(0) degrees . Pure ab initio prediction of J=1 and 2 rotational levels on the vibrational ground state by the CVRQD PESs is accurate to better than 0.002 cm(-1) for all isotopologs of water considered. Elaborate adjustment of the CVRQD PESs to reproduce all observed rovibrational transitions to better than 0.05 cm(-1) (or the lower ones to better than 0.0035 cm(-1)) does not result in noticeable changes in the adiabatic equilibrium structure parameters. The expectation values of the ground vibrational state rotational constants of the water isotopologs, computed in the Eckart frame using the CVRQD PESs and atomic masses, deviate from the experimentally measured ones only marginally, especially for A0 and B0. The small residual deviations in the effective rotational constants are due to centrifugal distortion, electronic, and non-Born-Oppenheimer effects. The spectroscopic (nonadiabatic) equilibrium structural parameters of H2 16O, obtained from experimentally determined A'0 and B'0 rotational constants corrected empirically to obtain equilibrium rotational constants, are r(e) (sp)=0.957 77 A and theta e (sp)=104.48 degrees .
平衡结构是分子科学中的基本实体。它们可通过复杂的反演程序从实验数据中推断出来,这些程序通常依赖于包括玻恩 - 奥本海默近似在内的几个假设。理论为平衡几何结构提供了一条直接途径。本文将分析由波利亚尼斯基等人[同上,299, 539 (2003)]报道并在此称为CVRQD的最近高质量的水电子基态从头算半全局绝热势能面(PES)。通过这条直接途径得到的平衡几何结构被认为比通过分析实验数据确定的结构具有更高的精度。对玻恩 - 奥本海默近似失效效应的详细研究表明,对于水来说,与同位素无关的平衡结构概念在约3×10⁻⁵埃和0.02度的范围内成立。水的基电子态PES上与质量无关的[玻恩 - 奥本海默(BO)]平衡键长和键角分别为rₑ(BO)=0.957 82埃和θₑ(BO)=104.48(5)度。H₂¹⁶O的相关质量依赖(绝热)平衡键长和键角分别为rₑ(ad)=0.957 85埃和θₑ(ad)=104.50(0)度,而D₂¹⁶O的则为rₑ(ad)=0.957 83埃和θₑ(ad)=104.49(0)度。对于所考虑的水的所有同位素分子,通过CVRQD PES对振动基态上J = 1和2转动能级的纯从头算预测精度优于0.002厘米⁻¹。对CVRQD PES进行精细调整以使其重现所有观测到的振转跃迁至优于0.05厘米⁻¹(或更低的跃迁至优于0.0035厘米⁻¹),并不会导致绝热平衡结构参数出现明显变化。使用CVRQD PES和原子质量在埃卡特坐标系中计算的水同位素分子基振动态转动常数的期望值,与实验测量值的偏差仅为微小偏差,尤其是对于A₀和B₀。有效转动常数中的小残余偏差是由于离心畸变、电子和非玻恩 - 奥本海默效应。从通过经验校正以获得平衡转动常数的实验测定的A'₀和B'₀转动常数得到的H₂¹⁶O的光谱(非绝热)平衡结构参数为rₑ(sp)=0.957 77埃和θₑ(sp)=104.48度。