Suppr超能文献

对手颜色的斯特鲁普干扰减少可能归因于输入因素:来自个体差异和神经网络模拟的证据。

Reduced Stroop interference for opponent colors may be due to input factors: evidence from individual differences and a neural network simulation.

作者信息

Laeng Bruno, Låg Torstein, Brennen Tim

机构信息

Department of Psychology, University of Tromsø, Huginbakken 32, N-9037 Tromsø, Norway.

出版信息

J Exp Psychol Hum Percept Perform. 2005 Jun;31(3):438-52. doi: 10.1037/0096-1523.31.3.438.

Abstract

Sensory or input factors can influence the strength of interference in the classic Stroop color-word task. Specifically, in a single-trial computerized version of the Stroop task, when color-word pairs were incongruent, opponent color pairs (e.g., the word BLUE in yellow) showed reduced Stroop interference compared with nonopponent color pairs (e.g., BLUE in red). In addition, participants' color discrimination ability was measured by standard color vision tests (i.e., Farnsworth-Munsell 100-Hue Test and Ishihara plates). Error rates in the Farnsworth-Munsell test correlated positively with the amount of Stroop interference. Neural network simulations (variants of J. D. Cohen, K. Dunbar, & J. L. McClelland's, 1990, model) showed that only a distributed trichromatic input layer was able to simulate these findings. Thus, sensory input from the color system needs to be incorporated into current accounts of the Stroop effect.

摘要

感觉或输入因素会影响经典斯特鲁普颜色-文字任务中的干扰强度。具体而言,在斯特鲁普任务的单次试验计算机化版本中,当颜色-文字对不一致时,对立颜色对(例如,黄色中的单词“蓝色”)与非对立颜色对(例如,红色中的“蓝色”)相比,显示出的斯特鲁普干扰减少。此外,参与者的颜色辨别能力通过标准色觉测试(即,法恩斯沃思-芒塞尔100色调测试和石原氏色盲测试图)来测量。法恩斯沃思-芒塞尔测试中的错误率与斯特鲁普干扰量呈正相关。神经网络模拟(J. D. 科恩、K. 邓巴和J. L. 麦克莱兰1990年模型的变体)表明,只有分布式三色输入层能够模拟这些发现。因此,来自颜色系统的感觉输入需要纳入当前对斯特鲁普效应的解释中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验