Suppr超能文献

用于乳腺癌成像的碳-11标记的sigma2受体配体。

Carbon-11 labeled sigma2 receptor ligands for imaging breast cancer.

作者信息

Tu Zhude, Dence Carmen S, Ponde Datta E, Jones Lynne, Wheeler Kenneth T, Welch Michael J, Mach Robert H

机构信息

Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

Nucl Med Biol. 2005 Jul;32(5):423-30. doi: 10.1016/j.nucmedbio.2005.03.008.

Abstract

Four conformationally flexible benzamide analogs having a high affinity and outstanding selectivity for sigma(2) versus sigma(1) receptors were synthesized and radiolabeled with carbon-11 by reaction with [(11)C]methyl iodide. The four (11)C-labeled radiotracers were evaluated for their potential to image the proliferative status of breast tumors with positron emission tomography (PET). In vivo studies in female BALB/C mice bearing EMT-6 breast tumors showed that one radiotracer, (2-methoxy-(11)C)-N-(4-(3,4-dihydro-6,7-dimethoxy-isoquinolin-2(1H)-yl)butyl)-5-methylbenzamide ([(11)C]2), had a high tumor uptake and suitable tumor/background ratio for imaging purposes. Blocking studies were consistent with the labeling of sigma(2) receptors in vivo. A study comparing the in vivo properties of [(11)C]2 and (18)F-3'-fluoro-3'-deoxy-L-thymidine ([(18)F]FLT) indicated that [(11)C]2 had either similar (lung, fat) or better (blood, muscle) tumor/organ ratios than [(18)F]FLT in the tissues that are important for breast tumor imaging. Consequently, [(11)C]2 is a potential radiotracer for imaging the proliferative status of breast tumors in vivo with PET.

摘要

合成了四种对σ(2)受体具有高亲和力且对σ(1)受体具有出色选择性的构象灵活的苯甲酰胺类似物,并通过与[(11)C]甲基碘反应将其用碳-11进行放射性标记。对这四种(11)C标记的放射性示踪剂进行了正电子发射断层扫描(PET)成像乳腺肿瘤增殖状态的潜力评估。在携带EMT-6乳腺肿瘤的雌性BALB/C小鼠体内研究表明,一种放射性示踪剂,(2-甲氧基-(11)C)-N-(4-(3,4-二氢-6,7-二甲氧基-异喹啉-2(1H)-基)丁基)-5-甲基苯甲酰胺([(11)C]2),具有高肿瘤摄取和适合成像目的的肿瘤/背景比。阻断研究与体内σ(2)受体的标记一致。一项比较[(11)C]2和(18)F-3'-氟-3'-脱氧-L-胸腺嘧啶([(18)F]FLT)体内特性的研究表明,在对乳腺肿瘤成像重要的组织中,[(11)C]2与[(18)F]FLT相比,具有相似的(肺、脂肪)或更好的(血液、肌肉)肿瘤/器官比。因此,[(11)C]2是一种利用PET在体内成像乳腺肿瘤增殖状态的潜在放射性示踪剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验