Suppr超能文献

与饮用水处理残余物长期磷保留相关的物理化学性质。

Physicochemical properties related to long-term phosphorus retention by drinking-water treatment residuals.

作者信息

Makris Konstantinos C, Harris Willie G, O'Connor George A, Obreza Thomas A, Elliott Herschel A

机构信息

Environmental Geochemistry Laboratory, Department of Earth and Environmental Science, University of Texas, San Antonio, 6900 North Loop 1604, San Antonio, Texas 78249-0663, USA.

出版信息

Environ Sci Technol. 2005 Jun 1;39(11):4280-9. doi: 10.1021/es0480769.

Abstract

Drinking-water treatment residuals (WTRs) are nonhazardous materials that can be obtained free-of-charge from drinking-water treatment plants to reduce soluble phosphorus (P) concentrations in poorly P sorbing soils. Phosphorus sorption capacities of WTRs can vary 1-2 orders of magnitude, on the basis of short-term equilibration times (up to 7 d), but studies dealing with long-term (weeks to months) P retention by WTRs are lacking. Properties that most affect long-term P sorption capacities are pertinent to the efficacy of WTRs as amendments to stabilize P in soils. This research addressed the long-term (up to 80 d) P sorption/desorption characteristics and kinetics for seven WTRs, including the influence of specific surface area (SSA), porosity, and total C content on the overall magnitude of P sorption by seven WTRs. The data confirm a strong but variable affinity for P by WTRs. Aluminum-based WTRs tended to have higher P sorption capacity than Fe-based WTRs. Phosphorus sorption with time was biphasic in nature for most samples and best fit to a second-order rate model. The P sorption rate dependency was strongly correlated with a hysteretic P desorption, consistent with kinetic limitations on P desorption from micropores. Oxalate-extractable Al + Fe concentrations of the WTRs did not effectively explain long-term (80 d) P sorption capacities of the WTRs. Micropore (CO2-based) SSAs were greater than BET-N2 SSAs for most WTRs, except those with the lowest (<80 g kg(-1)) total C content. There was a significant negative linear correlation between the total C content and the CO2/N2 SSA ratio. The data suggest that C in WTRs increases microporosity, but reduces P sorption per unit pore volume or surface area. Hence, variability in C content confounds direct relations among SSA, porosity, and P sorption. Total C, N2-based SSA, and CO2-based SSAs explained 82% of the variability in the long-term P sorption capacities of the WTRs. Prediction of long-term P sorption capacities for different WTRs may be achieved by taking into account the three proposed variables.

摘要

饮用水处理残余物(WTRs)是一种无害材料,可以从饮用水处理厂免费获取,用于降低磷吸附能力较差的土壤中的可溶性磷(P)浓度。基于短期平衡时间(最长7天),WTRs的磷吸附能力可能相差1 - 2个数量级,但缺乏关于WTRs长期(数周至数月)磷保留的研究。最影响长期磷吸附能力的特性与WTRs作为土壤中稳定磷的改良剂的功效相关。本研究探讨了7种WTRs的长期(最长80天)磷吸附/解吸特性和动力学,包括比表面积(SSA)、孔隙率和总碳含量对7种WTRs磷吸附总量的影响。数据证实WTRs对磷具有很强但可变的亲和力。基于铝的WTRs往往比基于铁的WTRs具有更高的磷吸附能力。大多数样品的磷吸附随时间呈双相性质,最符合二级速率模型。磷吸附速率依赖性与滞后性磷解吸密切相关,这与微孔中磷解吸的动力学限制一致。WTRs的草酸盐可提取铝 + 铁浓度并不能有效解释WTRs的长期(80天)磷吸附能力。除了总碳含量最低(<80 g kg⁻¹)的WTRs外,大多数WTRs的微孔(基于二氧化碳)SSA大于BET - N₂ SSA。总碳含量与二氧化碳/氮气SSA比值之间存在显著的负线性相关。数据表明,WTRs中的碳增加了微孔率,但降低了单位孔体积或表面积的磷吸附量。因此,碳含量的变化混淆了SSA、孔隙率和磷吸附之间的直接关系。总碳、基于氮气的SSA和基于二氧化碳的SSA解释了WTRs长期磷吸附能力82%的变异性。考虑到这三个提出的变量,可能实现对不同WTRs长期磷吸附能力的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验