Suppr超能文献

七鳃鳗幼体脊髓中左右相互耦合的破坏会消除大脑引发的运动活动。

Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity.

作者信息

Jackson Adam W, Horinek Dustin F, Boyd Malinda R, McClellan Andrew D

机构信息

Division of Biological Sciences and Interdisciplinary Neuroscience Program, 114 Lefevre Hall, University of Missouri, Columbia, Missouri 65211-6190, USA.

出版信息

J Neurophysiol. 2005 Sep;94(3):2031-44. doi: 10.1152/jn.00039.2005. Epub 2005 Jul 6.

Abstract

In this study, contributions of left-right reciprocal coupling mediated by commissural interneurons in spinal locomotor networks to rhythmogenesis were examined in larval lamprey that had longitudinal midline lesions in the rostral spinal cord [8 --> 30% body length (BL), relative distance from the head] or caudal spinal cord (30 --> 50% BL). Motor activity was initiated from brain locomotor command systems in whole animals or in vitro brain/spinal cord preparations. After midline lesions in the caudal spinal cord in whole animals and in vitro preparations, left-right alternating burst activity could be initiated in rostral and usually caudal regions of spinal motor networks. In in vitro preparations, blocking synaptic transmission in the rostral cord abolished burst activity in caudal hemi-spinal cords. After midline lesions in the rostral spinal cord in whole animals, left-right alternating muscle burst activity was present in the caudal and sometimes the rostral body. After spinal cord transections at 30% BL, rhythmic burst activity usually was no longer generated by rostral hemi-spinal cords. For in vitro preparations, very slow burst activity was sometimes present in isolated right and left rostral hemi-spinal cords, but the rhythmicity for this activity appeared to originate from the brain, and the parameters of the activity were significantly different from those for normal locomotor activity. In summary, in larval lamprey under these experimental conditions, left and right hemi-spinal cords did not generate rhythmic locomotor activity in response to descending inputs from the brain, suggesting that left-right reciprocal coupling contributes to both phase control and rhythmogenesis.

摘要

在本研究中,我们在吻端脊髓[体长(BL)的8 --> 30%,相对于头部的距离]或尾端脊髓(30 --> 50% BL)有纵向中线损伤的七鳃鳗幼体中,研究了脊髓运动网络中连合中间神经元介导的左右相互耦合对节律产生的作用。运动活动由全动物或体外脑/脊髓制剂中的脑运动指令系统启动。在全动物和体外制剂中对尾端脊髓进行中线损伤后,脊髓运动网络的吻端区域以及通常的尾端区域可启动左右交替的爆发性活动。在体外制剂中,阻断吻端脊髓的突触传递可消除尾端半脊髓的爆发性活动。在全动物中对吻端脊髓进行中线损伤后,尾端以及有时吻端身体会出现左右交替的肌肉爆发性活动。在30% BL处进行脊髓横断后,吻端半脊髓通常不再产生节律性爆发活动。对于体外制剂,分离的左右吻端半脊髓有时会出现非常缓慢的爆发性活动,但这种活动的节律性似乎源于脑,且其活动参数与正常运动活动的参数显著不同。总之,在这些实验条件下的七鳃鳗幼体中,左右半脊髓不会响应来自脑的下行输入而产生节律性运动活动,这表明左右相互耦合有助于相位控制和节律产生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验