Suppr超能文献

一种多组分格子玻尔兹曼格式:迈向血流的中尺度模拟

A multi-component lattice Boltzmann scheme: towards the mesoscale simulation of blood flow.

作者信息

Dupin M M, Halliday I, Care C M

机构信息

Materials Research Institute, Sheffield Hallam University, Howard Street, S1 1WB, UK.

出版信息

Med Eng Phys. 2006 Jan;28(1):13-8. doi: 10.1016/j.medengphy.2005.04.015. Epub 2005 Jul 11.

Abstract

While blood at the macroscopic scale is frequently treated as a continuum by techniques such as computational fluid dynamics, its mesoscale behaviour is not so well investigated or understood. At this scale, the deformability of each cell within the plasma is important and cannot be ignored. However there is currently a lack of efficient computational techniques able to simulate a large number of deformable particles such as blood cells. This paper addresses this problem and demonstrates the applicability of the authors' recent multi-component lattice Boltzmann method for the simulation of a large number of mutually immiscible liquid species [Dupin MM, Halliday I, Care CM. Multi-component lattice boltzmann equation for mesoscale blood flow. J Phys A: Math Gen 2003;36:8517-34]. In here, biological cells are treated as immiscible, deformable, and relatively viscous drops (compared to the surrounding fluid). The validation of the model is based on the work of Goldsmith on the flow of solid particles, deformable particles and red blood cells [Goldsmith HL, Marlow JC. Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells. J Colloid Interf Sci 1979;71:383-407]. We demonstrate, in particular, that the model recovers Goldsmith's observations on the flow properties of red blood cells and also the experimental observations of Frank on the flow of solid beads [Frank M, Anderson D, Weeks ER, Morris JF. Particle migration in pressure-driven flow of a brownian suspension. J Fluid Mech 2003;493:363-78]. The current article is the first validation of our new lattice Boltzmann model for a large number of deformable particles in this context and demonstrates that the method provides a new, and effective, approach for the modeling of mesoscale blood flow.

摘要

虽然在宏观尺度上,血液常常通过计算流体动力学等技术被视为一种连续介质,但其介观尺度行为却没有得到很好的研究或理解。在这个尺度下,血浆中每个细胞的可变形性很重要且不能被忽视。然而,目前缺乏能够模拟大量可变形粒子(如血细胞)的有效计算技术。本文解决了这个问题,并证明了作者最近提出的多组分格子玻尔兹曼方法适用于模拟大量互不相溶的液体种类[Dupin MM, Halliday I, Care CM. 用于介观尺度血流的多组分格子玻尔兹曼方程。《物理学杂志A:数学与一般物理学》2003年;36:8517 - 34]。在这里,生物细胞被视为互不相溶、可变形且相对周围流体具有粘性的液滴。该模型的验证基于戈德史密斯关于固体颗粒、可变形颗粒和红细胞流动的研究工作[Goldsmith HL, Marlow JC. 红细胞的流动行为。II. 空壳细胞浓悬浮液中的粒子运动。《胶体与界面科学杂志》1979年;71:383 - 407]。我们特别证明,该模型重现了戈德史密斯关于红细胞流动特性的观察结果,以及弗兰克关于固体珠子流动的实验观察结果[Frank M, Anderson D, Weeks ER, Morris JF. 布朗悬浮液压力驱动流动中的粒子迁移。《流体力学杂志》2003年;493:363 - 78]。在这种情况下,本文是对我们新的格子玻尔兹曼模型用于大量可变形粒子的首次验证,并表明该方法为介观尺度血流建模提供了一种新的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验