Kumar Nitin, Hahm Jong-in
Department of Chemical Engineering, Pennsylvania State University, 160 Fenske Laboratory, University Park, Pennsylvania 16802, USA.
Langmuir. 2005 Jul 19;21(15):6652-5. doi: 10.1021/la050331v.
Novel methods for immobilizing proteins on surfaces have the potential to impact basic biological research as well as various biochip applications. Here, we demonstrate a unique method to pattern proteins with a nanometer periodicity on silicon oxide substrates using microphase-separated diblock copolymer thin films. We developed a straightforward and effective protein immobilization technique using the microphase-separated domains of polystyrene-block-poly(methyl methacrylate) to localize various model protein molecules such as bovine immunoglobulin G, fluorescein isothiocyanate conjugated anti-bovine immunoglobulin G, and protein G. The self-organizing nature of the diblock copolymer was exploited to produce periodically alternating, nanometer-spaced polymeric domains exposing the two chemical compositions of the diblock to surface. We demonstrate that the model proteins selectively self-organize themselves on the microdomain regions of specific polymer components due to their preferential interactions with one of the two polymer segments. This diblock copolymer-based, self-assembly approach represents a step forward for facile, nanometer-spaced protein immobilization with high areal density and could provide a pathway to high-throughput proteomic arrays and biosensors.
将蛋白质固定在表面的新方法有可能影响基础生物学研究以及各种生物芯片应用。在此,我们展示了一种独特的方法,利用微相分离的二嵌段共聚物薄膜在氧化硅衬底上以纳米周期性对蛋白质进行图案化。我们开发了一种直接有效的蛋白质固定技术,利用聚苯乙烯 - 嵌段 - 聚(甲基丙烯酸甲酯)的微相分离区域来定位各种模型蛋白质分子,如牛免疫球蛋白G、异硫氰酸荧光素偶联的抗牛免疫球蛋白G和蛋白G。利用二嵌段共聚物的自组装性质,产生周期性交替的、纳米间距的聚合物区域,将二嵌段的两种化学成分暴露于表面。我们证明,由于模型蛋白质与两种聚合物链段之一的优先相互作用,它们在特定聚合物组分的微区区域选择性地自我组织。这种基于二嵌段共聚物的自组装方法代表了朝着以高面密度实现简便、纳米间距蛋白质固定迈出的一步,并可为高通量蛋白质组学阵列和生物传感器提供一条途径。