Suppr超能文献

使用图谱对层次结构进行索引。

Indexing hierarchical structures using graph spectra.

作者信息

Shokoufandeh Ali, Macrini Diego, Dickinson Sven, Siddiqi Kaleem, Zucker Steven W

机构信息

Department of Computer Science, College of Enegineering, 3141 Chestnut St., Philadelphia, PA 19104, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2005 Jul;27(7):1125-40. doi: 10.1109/TPAMI.2005.142.

Abstract

Hierarchical image structures are abundant in computer vision and have been used to encode part structure, scale spaces, and a variety of multiresolution features. In this paper, we describe a framework for indexing such representations that embeds the topological structure of a directed acyclic graph (DAG) into a low-dimensional vector space. Based on a novel spectral characterization of a DAG, this topological signature allows us to efficiently retrieve a promising set of candidates from a database of models using a simple nearest-neighbor search. We establish the insensitivity of the signature to minor perturbation of graph structure due to noise, occlusion, or node split/merge. To accommodate large-scale occlusion, the DAG rooted at each nonleaf node of the query "votes" for model objects that share that "part," effectively accumulating local evidence in a model DAG's topological subspaces. We demonstrate the approach with a series of indexing experiments in the domain of view-based 3D object recognition using shock graphs.

摘要

分层图像结构在计算机视觉中大量存在,并已被用于编码部分结构、尺度空间以及各种多分辨率特征。在本文中,我们描述了一种为这类表示建立索引的框架,该框架将有向无环图(DAG)的拓扑结构嵌入到低维向量空间中。基于一种新颖的DAG谱特征,这种拓扑签名使我们能够使用简单的最近邻搜索从模型数据库中高效地检索出一组有前景的候选对象。我们证明了该签名对由于噪声、遮挡或节点分裂/合并导致的图结构微小扰动不敏感。为了适应大规模遮挡,以查询的每个非叶节点为根的DAG对共享该“部分”的模型对象进行“投票”,从而有效地在模型DAG的拓扑子空间中积累局部证据。我们在基于视图的3D对象识别领域使用冲击图进行了一系列索引实验,展示了该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验