Suppr超能文献

射频肿瘤消融:电导率和热导率效应的计算机模拟与数学建模

RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.

作者信息

Lobo S M, Liu Z-J, Yu N C, Humphries S, Ahmed M, Cosman E R, Lenkinski R E, Goldberg W, Goldberg S N

机构信息

Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Int J Hyperthermia. 2005 May;21(3):199-213. doi: 10.1080/02656730400001108.

Abstract

This study determined the effects of thermal conductivity on RF ablation tissue heating using mathematical modelling and computer simulations of RF heating coupled to thermal transport. Computer simulation of the Bio-Heat equation coupled with temperature-dependent solutions for RF electric fields (ETherm) was used to generate temperature profiles 2 cm away from a 3 cm internally-cooled electrode. Multiple conditions of clinically relevant electrical conductivities (0.07-12 S m-1) and 'tumour' radius (5-30 mm) at a given background electrical conductivity (0.12 S m-1) were studied. Temperature response surfaces were plotted for six thermal conductivities, ranging from 0.3-2 W m-1 degrees C (the range of anticipated clinical and experimental systems). A temperature response surface was obtained for each thermal conductivity at 25 electrical conductivities and 17 radii (n=425 temperature data points). The simulated temperature response was fit to a mathematical model derived from prior phantom data. This mathematical model is of the form (T=a+bRc exp(dR) s(f) exp(g)(s)) for RF generator-energy dependent situations and (T=h+k exp(mR)+n?exp(p)(s)) for RF generator-current limited situations, where T is the temperature (degrees C) 2 cm from the electrode and a, b, c, d, f, g, h, k, m, n and p are fitting parameters. For each of the thermal conductivity temperature profiles generated, the mathematical model fit the response surface to an r2 of 0.97-0.99. Parameters a, b, c, d, f, k and m were highly correlated to thermal conductivity (r2=0.96-0.99). The monotonic progression of fitting parameters permitted their mathematical expression using simple functions. Additionally, the effect of thermal conductivity simplified the above equation to the extent that g, h, n and p were found to be invariant. Thus, representation of the temperature response surface could be accurately expressed as a function of electrical conductivity, radius and thermal conductivity. As a result, the non-linear temperature response of RF induced heating can be adequately expressed mathematically as a function of electrical conductivity, radius and thermal conductivity. Hence, thermal conductivity accounts for some of the previously unexplained variance. Furthermore, the addition of this variable into the mathematical model substantially simplifies the equations and, as such, it is expected that this will permit improved prediction of RF ablation induced temperatures in clinical practice.

摘要

本研究通过对射频加热与热传递耦合进行数学建模和计算机模拟,确定了热导率对射频消融组织加热的影响。利用生物热方程的计算机模拟以及射频电场(ETherm)的温度相关解,生成距3厘米内部冷却电极2厘米处的温度分布。研究了在给定背景电导率(0.12 S m-1)下多种临床相关电导率(0.07 - 12 S m-1)和“肿瘤”半径(5 - 30毫米)的情况。针对六种热导率绘制了温度响应曲面,范围为0.3 - 2 W m-1℃(预期临床和实验系统的范围)。在25种电导率和17种半径下(n = 425个温度数据点),为每种热导率获得了一个温度响应曲面。模拟的温度响应与从先前体模数据推导的数学模型相拟合。对于射频发生器能量相关情况,该数学模型的形式为(T = a + bRc exp(dR) s(f) exp(g)(s)),对于射频发生器电流受限情况,形式为(T = h + k exp(mR) + n?exp(p)(s)),其中T是距电极2厘米处的温度(℃),a、b、c、d、f、g、h、k、m、n和p是拟合参数。对于生成的每个热导率温度分布,数学模型与响应曲面的拟合度r2为0.97 - 0.99。参数a、b、c、d、f、k和m与热导率高度相关(r2 = 0.96 - 0.99)。拟合参数的单调变化允许使用简单函数对其进行数学表达。此外,热导率的影响使上述方程简化到发现g、h、n和p不变的程度。因此,温度响应曲面的表示可以准确地表示为电导率、半径和热导率的函数。结果,射频感应加热的非线性温度响应可以充分地用数学形式表示为电导率、半径和热导率的函数。因此,热导率解释了一些先前无法解释的差异。此外,将此变量添加到数学模型中大大简化了方程,因此预计这将有助于在临床实践中更好地预测射频消融引起的温度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验