Hill Carol A, Thomas C L Paul
School of Chemical Engineering and Analytical Science, The University of Manchester, UKM60 1QD.
Analyst. 2005 Aug;130(8):1155-61. doi: 10.1039/b502215k. Epub 2005 Jun 27.
The concept of using a short ionisation event, in this case a pulsed corona discharge, in conjunction with programmed gate delay is described. This technique is proposed for the selective study of different ionisation processes within the reaction region of an ion mobility spectrometer. The utility of such an approach was tested in a study of the ionisation of dipropylene-glycol-monomethyl-ether (DPM); a compound commonly used to test the operation of ion mobility spectrometers. Dipropylene-glycol-monomethyl-ether at a concentration of 113 microg m(-3) in air, with a water level of 75 mg m(-3) in air, was analysed using a switchable, high resolution ion mobility spectrometer, operating in the positive mode at 40 degrees C at ambient pressure. The ion mobility spectrometer was fitted with a pulsed corona discharge ionisation source, doped with ammonia at a concentration of 1.3 mg m(-3) in the reaction region, and interfaced to a mass spectrometer. Synchronisation of the ionisation event to the operation of the shutter grids for the drift region enabled different parts of the product ion population to be injected into the drift tube, and programming the gate delays produced a map of the gate delay verses drift time response surface. Ammonium bound dipropylene-glycol-monomethyl-ether was observed, [(DPM)NH4]+ (m/z 166) as well as the ammonium bound dimer [(DPM)2NH4]+ (m/z 314), the same as those observed with a 63Ni source. Two other species were also observed, but their molecular identity was not elucidated. One of them m/z 146, also observed with 63Ni, formed ammonium bound ions [(m/z 146)NH4]+ (K0= 1.49 cm2 V(-1) s(-1)), ammonium bound dimer ions [(m/z 146)2NH4]+(K0= 1.18 cm2 V(-1) s(-1)) and a mixed cluster ion with DPM [(m/z 146)(DPM)NH4]+(K0= 1.18 cm2 V(-1) s(-1)); while the other, m/z 88 a decomposition product, formed ammonium bound monomer [(m/z 88)NH4]+(K0= 1.68 cm2 V(-1) s(-1)), dimer ions [(m/z 88)2NH4]+(K0= 1.40 cm2 V(-1) s(-1)) and a mixed cluster ion containing DPM and ammonium, [(DPM)(m/z 88)2NH4]+(K0= 1.40 cm2 V(-1) s(-1)). The assignment of responses to these ions required the additional dimensionality in the data provided from the gate delay studies. The relationships evident in the programmable gate delay data enabled these ions to be differentiated from alternative assignments of possible nitrogen clusters, formed at the interface of the mass spectrometer.
本文描述了利用短电离事件(在此为脉冲电晕放电)并结合编程门延迟的概念。该技术被提议用于选择性研究离子迁移谱仪反应区域内的不同电离过程。在对二丙二醇单甲醚(DPM)的电离研究中测试了这种方法的实用性;DPM是一种常用于测试离子迁移谱仪运行情况的化合物。使用一台可切换的高分辨率离子迁移谱仪对空气中浓度为113 μg m⁻³且水汽含量为75 mg m⁻³的二丙二醇单甲醚进行分析,该谱仪在40℃、环境压力下以正模式运行。离子迁移谱仪配备了脉冲电晕放电电离源,在反应区域中掺杂了浓度为1.3 mg m⁻³的氨,并与一台质谱仪相连。将电离事件与漂移区快门栅的操作同步,可使产物离子群体的不同部分注入漂移管,对门延迟进行编程可生成门延迟与漂移时间响应面的图谱。观察到了铵结合的二丙二醇单甲醚,即[(DPM)NH₄]⁺(m/z 166)以及铵结合的二聚体[(DPM)₂NH₄]⁺(m/z 314),与用⁶³Ni源观察到的相同。还观察到了另外两种物质,但它们的分子身份尚未阐明。其中一种m/z 146也在用⁶³Ni时观察到,形成了铵结合离子[(m/z 146)NH₄]⁺(K₀ = 1.49 cm² V⁻¹ s⁻¹)、铵结合二聚体离子[(m/z 146)₂NH₄]⁺(K₀ = 1.18 cm² V⁻¹ s⁻¹)以及与DPM的混合簇离子[(m/z 146)(DPM)NH₄]⁺(K₀ = 1.18 cm² V⁻¹ s⁻¹);而另一种m/z 88是一种分解产物,形成了铵结合单体[(m/z 88)NH₄]⁺(K₀ = 1.68 cm² V⁻¹ s⁻¹)、二聚体离子[(m/z 88)₂NH₄]⁺(K₀ = 1.40 cm² V⁻¹ s⁻¹)以及包含DPM和铵的混合簇离子[(DPM)(m/z 88)₂NH₄]⁺(K₀ = 1.40 cm² V⁻¹ s⁻¹)。对这些离子响应的归属需要门延迟研究提供的数据中的额外维度。可编程门延迟数据中明显的关系使得这些离子能够与在质谱仪接口处形成的可能氮簇的其他归属区分开来。