Gaudin Arnaud, Gascuel Jean
Centre des Sciences du Goût (Unité Mixte de Recherche 5170 Centre National de la Recherche Scientifique-Université de Bourgogne-Institut National de la Recherche Agronomique), F-21000 Dijon, France.
J Comp Neurol. 2005 Sep 5;489(4):403-24. doi: 10.1002/cne.20655.
The adult Xenopus presents the unique capability to smell odors both in water and air thanks to two different olfactory pathways. Nevertheless, the tadpole can initially perceive only water-borne odorants, as the olfactory receptor neurons (ORN) that will detect air-borne odorants develop later. Such a phenomenon requires major reorganization processes. Here we focused on the precise description of the neuroanatomical modifications occurring in the olfactory bulb (OB) of the tadpole throughout metamorphosis. Using both carbocyanine dyes and lectin staining, we investigated the evolution of ORN projection patterns into the OB from Stages 47 to 66, thus covering the period of time when all the modifications take place. Although our results confirm previous works (Reiss and Burd [1997] Semin Cell Dev Biol 8:171-179), we showed for the first time that the main olfactory bulb (MOB) is subdivided into seven zones at Stage 47 plus the accessory olfactory bulb (AOB). These seven zones receive fibers dedicated to aquatic olfaction ("aquatic fibers") and are conserved until Stage 66. At Stage 48 the first fibers dedicated to the aerial olfaction constitute a new dorsomedial zone that grows steadily, pushing the seven original zones ventrolaterally. Only the part of the OB receiving aquatic fibers is fragmented, reminiscent of the organization described in fish. This raises the question of whether such an organization in zones constitutes a plesiomorphy or is linked to aquatic olfaction. We generated a 3D atlas at several stages which are representative of the reorganization process. This will be a useful tool for future studies of development and function.
成年非洲爪蟾具有独特的能力,能够通过两种不同的嗅觉途径在水中和空气中嗅闻气味。然而,蝌蚪最初只能感知水中传播的气味剂,因为负责检测空气中气味剂的嗅觉受体神经元(ORN)稍后才发育。这种现象需要重大的重组过程。在这里,我们专注于精确描述蝌蚪在整个变态过程中嗅球(OB)发生的神经解剖学变化。我们使用碳菁染料和凝集素染色,研究了从第47阶段到第66阶段ORN投射模式向OB的演变,从而涵盖了所有变化发生的时间段。虽然我们的结果证实了先前的研究(Reiss和Burd [1997] Semin Cell Dev Biol 8:171 - 179),但我们首次表明,在第47阶段主嗅球(MOB)被细分为七个区域,外加副嗅球(AOB)。这七个区域接收专门用于水生嗅觉的纤维(“水生纤维”),并一直保留到第66阶段。在第48阶段,第一批专门用于空气嗅觉的纤维构成了一个新的背内侧区域,该区域稳步生长,将原来的七个区域向腹外侧推移。只有OB中接收水生纤维的部分出现碎片化,这让人联想到鱼类中描述的组织形式。这就提出了一个问题,即这种区域组织是一种原始特征还是与水生嗅觉有关。我们在几个代表重组过程的阶段生成了一个三维图谱。这将成为未来发育和功能研究的有用工具。