Dickschat Jeroen S, Bode Helge B, Kroppenstedt Reiner M, Müller Rolf, Schulz Stefan
Institut für Organische Chemie, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
Org Biomol Chem. 2005 Aug 7;3(15):2824-31. doi: 10.1039/b504889c. Epub 2005 Jun 27.
The fatty acid (FA) profiles of the myxobacteria Stigmatella aurantiaca and Myxococcus xanthus were investigated by acidic methanolysis of total cell extracts and GC or GC-MS analysis. The main components were 13-methyltetradecanoic acid (iso-15:0) and (Z)-hexadec-11-enoic acid (16:1, omega-5 cis). The biosynthesis of iso-FAs was investigated in several feeding experiments. Feeding of isovaleric acid (IVA) to a mutant impaired in the degradation of leucine to isovaleryl-CoA (IV-CoA)(bkd mutant) of M. xanthus only increased the amount of iso-odd FAs, whereas feeding of isobutyric acid (IBA) gave increased amounts only of iso-even FAs. In contrast, a bkd mutant of S. aurantiaca gave increased amounts of iso-odd and iso-even fatty acids in both experiments. We assumed that in S. aurantiacaalpha-oxidation takes place. [D(7)]-15-Methylhexadecanoic acid was synthesised and fed to S. aurantiaca as well as [D(10)]leucine and [D(8)]valine to elucidate this pathway in more detail. The iso-fatty acid was degraded by alpha- and beta-oxidation steps. [D(10)]Leucine was strongly incorporated into iso-odd and iso-even fatty acids, whereas the incorporation rates for [D(8)]valine into both types of fatty acids were low. Thus alpha-oxidation plays an important role in the biosynthesis of iso-fatty acids in S. aurantiaca. The incorporation rates observed after feeding of [D(10)]leucine and [D(8)]valine are the highest for iso-17:0 compared to the other acids. This indicates the central role of iso-17:0 in the biosynthesis of iso-FAs. The shorter homologues seem to be formed mainly by alpha-oxidation and beta-oxidation of this acid. After feeding of traces of unsaturated counterparts of this labelled FA occurred in the extracts indicating that desaturases are active in the biosynthesis of unsaturated fatty acids in S. aurantiaca.
通过对全细胞提取物进行酸性甲醇解以及气相色谱(GC)或气相色谱 - 质谱联用(GC - MS)分析,研究了粘细菌橙色标桩菌(Stigmatella aurantiaca)和黄色粘球菌(Myxococcus xanthus)的脂肪酸(FA)谱。主要成分是13 - 甲基十四烷酸(异 - 15:0)和(Z) - 十六碳 - 11 - 烯酸(16:1,ω - 5顺式)。在几个饲喂实验中研究了异脂肪酸的生物合成。将异戊酸(IVA)喂给黄色粘球菌中亮氨酸降解为异戊酰辅酶A(IV - CoA)功能受损的突变体(bkd突变体),只会增加异奇数脂肪酸的量,而喂给异丁酸(IBA)只会增加异偶数脂肪酸的量。相比之下,橙色标桩菌的bkd突变体在两个实验中异奇数和异偶数脂肪酸的量都增加了。我们推测在橙色标桩菌中发生了α - 氧化。合成了[D(7)] - 15 - 甲基十六烷酸并将其喂给橙色标桩菌,同时还喂给了[D(10)]亮氨酸和[D(8)]缬氨酸,以更详细地阐明这条途径。异脂肪酸通过α - 氧化和β - 氧化步骤降解。[D(10)]亮氨酸大量掺入异奇数和异偶数脂肪酸中,而[D(8)]缬氨酸掺入这两种脂肪酸的速率较低。因此,α - 氧化在橙色标桩菌异脂肪酸的生物合成中起重要作用。与其他酸相比,饲喂[D(10)]亮氨酸和[D(8)]缬氨酸后观察到的掺入率对于异 - 17:0是最高的。这表明异 - 17:0在异脂肪酸生物合成中的核心作用。较短的同系物似乎主要由这种酸的α - 氧化和β - 氧化形成。饲喂痕量的这种标记脂肪酸的不饱和对应物后,提取物中出现了不饱和对应物,这表明去饱和酶在橙色标桩菌不饱和脂肪酸的生物合成中具有活性。