Wang J C-C, Harris W A
Department of Anatomy, Downing Site, Cambridge University, Cambridge CB2 3DY, UK.
Dev Biol. 2005 Sep 1;285(1):101-15. doi: 10.1016/j.ydbio.2005.05.041.
Two major families of transcription factors (TFs), basic helix-loop-helix (bHLH) and homeodomain (HD), are known to be involved in cell fate identity. Some recent findings suggest that these TFs are used combinatorially to code for cellular determination in the retina. However, neither the extent nor the efficiency of such a combinatorial coding mechanism has been tested. To look systematically for interactions between these two TF types that would address these questions, we used a matrix analysis. We co-expressed each of six retinally expressed bHLH TFs (XNeuroD; XNgnr-1; Xath3; Xath5; Xash1; Xash3) with each of eight retinally expressed HD TFs (XRx1; XOptx2; XSix3; XPax6; XOtx2; XOtx5b; XBH; XChx10) in retinal progenitors of Xenopus laevis using targeted lipofection. The effects of each of these combinations were assayed on the six major cell types in the retina: Retinal ganglion cells (GCs), Amacrines (ACs), Bipolars (BCs), Horizontals (HCs), Photoreceptors (PRs), and Muller cells (MCs), creating 288 result categories. Multiple-way ANOVA indicated that in 14 categories, there were interactions between the two TFs that produced significantly more or less of a particular cell type than either of the components alone. However, even the most effective combinations were incapable of generating more than 65% of any particular cell type. We therefore used the same techniques to misexpress selected combinations of three TFs in retinal progenitors, but found no further enhancements of particular cell fates, indicating that other factors are probably involved in cell type specification. To test whether particular combinations were essential for horizontal fates, we made VP16 and EnR fusion constructs of some of the factors to provide dominant negative transcriptional activities. Our results confirmed that normal activities of certain combinations were sufficient, and that individually these activities were important for this fate.
已知有两个主要的转录因子(TF)家族,即碱性螺旋-环-螺旋(bHLH)和同源结构域(HD),参与细胞命运的确定。最近的一些研究结果表明,这些转录因子以组合方式用于编码视网膜中的细胞分化。然而,这种组合编码机制的程度和效率尚未得到测试。为了系统地寻找这两种转录因子类型之间能够解决这些问题的相互作用,我们采用了矩阵分析。我们使用靶向脂质转染技术,在非洲爪蟾的视网膜祖细胞中共表达六种视网膜表达的bHLH转录因子(XNeuroD;XNgnr-1;Xath3;Xath5;Xash1;Xash3)中的每一种与八种视网膜表达的HD转录因子(XRx1;XOptx2;XSix3;XPax6;XOtx2;XOtx5b;XBH;XChx10)中的每一种。检测这些组合中的每一种对视网膜中六种主要细胞类型的影响:视网膜神经节细胞(GCs)、无长突细胞(ACs)、双极细胞(BCs)、水平细胞(HCs)、光感受器(PRs)和穆勒细胞(MCs),从而产生288种结果类别。多因素方差分析表明,在14个类别中,两种转录因子之间存在相互作用,与单独的任何一个成分相比,产生的特定细胞类型显著增多或减少。然而,即使是最有效的组合也无法产生超过任何特定细胞类型65%的细胞。因此,我们使用相同的技术在视网膜祖细胞中错误表达三种转录因子的选定组合,但未发现特定细胞命运有进一步增强,这表明其他因素可能参与细胞类型的特化。为了测试特定组合对于水平细胞命运是否至关重要,我们构建了一些因子的VP16和EnR融合构建体,以提供显性负转录活性。我们的结果证实,某些组合的正常活性就足够了,而且这些活性单独对于这种命运很重要。