Gabriel W, Bürger R
Department of Physiological Ecology, Max Planck Institute for Limnology, Plön, Germany.
Theor Popul Biol. 1992 Feb;41(1):44-71. doi: 10.1016/0040-5809(92)90049-y.
We estimate the mean time to extinction of small populations in an environment with constant carrying capacity but under stochastic demography. In particular, we investigate the interaction of stochastic variation in fecundity and sex ratio under several different schemes of density dependent population growth regimes. The methods used include Markov chain theory, Monte Carlo simulations, and numerical simulations based on Markov chain theory. We find a strongly enhanced extinction risk if stochasticity in sex ratio and fluctuating population size act simultaneously as compared to the case where each mechanism acts alone. The distribution of extinction times deviates slightly from a geometric one, in particular for short extinction times. We also find that whether maximization of intrinsic growth rate decreases the risk of extinction or not depends strongly on the population regulation mechanism. If the population growth regime reduces populations above the carrying capacity to a size below the carrying capacity for large r (overshooting) then the extinction risk increases if the growth rate deviates from an optimal r-value.
我们估计了在具有恒定承载能力但处于随机种群统计学环境下小种群灭绝的平均时间。特别地,我们研究了在几种不同的密度依赖种群增长模式下,繁殖力和性别比例的随机变化之间的相互作用。所使用的方法包括马尔可夫链理论、蒙特卡罗模拟以及基于马尔可夫链理论的数值模拟。我们发现,与每种机制单独作用的情况相比,当性别比例的随机性和种群大小的波动同时作用时,灭绝风险会显著增加。灭绝时间的分布与几何分布略有偏差,特别是对于较短的灭绝时间。我们还发现,内在增长率最大化是否会降低灭绝风险在很大程度上取决于种群调节机制。如果种群增长模式将高于承载能力的种群数量减少到对于较大的r值低于承载能力的大小(超调),那么如果增长率偏离最优r值,灭绝风险就会增加。