Baldwin Nicole E, Chesler Elissa J, Kirov Stefan, Langston Michael A, Snoddy Jay R, Williams Robert W, Zhang Bing
Department of Computer Science, The University of Tennessee, Knoxville, TN 37996, USA.
J Biomed Biotechnol. 2005 Jun 30;2005(2):172-80. doi: 10.1155/JBB.2005.172.
Gene expression microarray data can be used for the assembly of genetic coexpression network graphs. Using mRNA samples obtained from recombinant inbred Mus musculus strains, it is possible to integrate allelic variation with molecular and higher-order phenotypes. The depth of quantitative genetic analysis of microarray data can be vastly enhanced utilizing this mouse resource in combination with powerful computational algorithms, platforms, and data repositories. The resulting network graphs transect many levels of biological scale. This approach is illustrated with the extraction of cliques of putatively co-regulated genes and their annotation using gene ontology analysis and cis-regulatory element discovery. The causal basis for co-regulation is detected through the use of quantitative trait locus mapping.
基因表达微阵列数据可用于构建基因共表达网络图。利用从重组近交系小家鼠品系获得的mRNA样本,能够将等位基因变异与分子及高阶表型整合起来。结合这种小鼠资源以及强大的计算算法、平台和数据储存库,微阵列数据的定量遗传分析深度可得到极大提升。由此产生的网络图跨越了多个生物尺度层次。通过使用基因本体分析和顺式调控元件发现来提取假定共调控基因的团簇并对其进行注释,阐述了这种方法。通过使用数量性状基因座定位来检测共调控的因果基础。