Suppr超能文献

结合化学计量学(多变量分析)的新型质量控制方法用于检测蜂蜜的真伪。

Novel quality control methods in conjunction with chemometrics (multivariate analysis) for detecting honey authenticity.

作者信息

Arvanitoyannis I S, Chalhoub C, Gotsiou P, Lydakis-Simantiris N, Kefalas P

机构信息

University of Thessaly, School of Agricultural Sciences, Department of Agriculture Animal Production and Aquatic Environment, Hellas, Greece.

出版信息

Crit Rev Food Sci Nutr. 2005;45(3):193-203. doi: 10.1080/10408690590956369.

Abstract

The importance of honey has been recently upgraded because of its nutrient and therapeutic effect. The adulteration of honey increased exponentially in terms of both geographic and/or botanical origin. Therefore, the need has arisen for more effective quality control methods aiming at detecting adulteration. Various novel, fast, and accurate methods like AAS, HPLC, GC-MS, ES-MS, TLC, HPAED-PAD, NMR, FT-Raman, and NIR have enriched the arsenal of analytical chemist in this direction. However, apart from these novel methods, the application of multivariate analysis and, in particular, PCA, CLA, and CA, proved to be extremely useful for grouping and detecting honey of various origins. Mineral and trace element analysis were repeatedly shown to be a very effective means for the classification purposes of honey of various origins (geographical and botanical).

摘要

由于蜂蜜的营养和治疗作用,其重要性最近得到了提升。蜂蜜在地理和/或植物来源方面的掺假呈指数级增长。因此,需要更有效的质量控制方法来检测掺假。诸如原子吸收光谱法(AAS)、高效液相色谱法(HPLC)、气相色谱-质谱联用法(GC-MS)、电喷雾质谱法(ES-MS)、薄层色谱法(TLC)、高效阴离子交换色谱-脉冲安培检测法(HPAED-PAD)、核磁共振法(NMR)、傅里叶变换拉曼光谱法(FT-Raman)和近红外光谱法(NIR)等各种新颖、快速且准确的方法丰富了分析化学家在这方面的分析手段。然而,除了这些新颖方法外,多元分析尤其是主成分分析(PCA)、聚类分析(CLA)和对应分析(CA)的应用,被证明对不同来源蜂蜜的分组和检测极为有用。矿物质和微量元素分析多次表明是对不同来源(地理和植物)蜂蜜进行分类的非常有效的手段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验