Suppr超能文献

Analysis of copper binding in the ternary system Cu2+/humic acid/goethite at neutral to acidic pH.

作者信息

Saito Takumi, Koopal Luuk K, Nagasaki Shinya, Tanaka Satoru

机构信息

Department of Quantum Engineering and Systems Science, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.

出版信息

Environ Sci Technol. 2005 Jul 1;39(13):4886-93. doi: 10.1021/es0500308.

Abstract

Binding of heavy metal and actinide ions to natural colloids, such as humic substances (HSs) and metal (hydr)-oxides, plays an important role in the ecotoxicological behavior of these ions. Several thermodynamic models have been constructed to predict the speciation of these ions in metal/HS or metal/oxide binary systems. However, in natural environments the adsorption of HSs on oxides can influence the binding of target metals, leading to deviation from the additivity of calibrated binary models. In this study binding of copper (Cu2+) to the purified Aldrich humic acid (PAHA)/goethite complex in the neutral to acidic pH region was investigated by measuring Cu2+ binding isotherms. The measured isotherms were compared with the results obtained for the binary systems under similar conditions. The comparison revealed that Cu2+ binding in the ternary system is enhanced with respect to the sum of Cu2+ binding in the corresponding binary systems. From the analysis of the charging behavior of the adsorbed PAHA as well as the smeared-out potential profile near the PAHA/goethite interface, the increase of Cu2+ binding to the complex was mainly attributed to the decrease of proton competition to the functional groups of the adsorbed PAHA and the change of the electrostatic potential in the vicinity of the goethite surface.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验