Ishikawa Madoka, Yoshida Koji, Yamashita Yoshihiro, Ota Jun, Takada Shuji, Kisanuki Hiroyuki, Koinuma Koji, Choi Young Lim, Kaneda Ruri, Iwao Toshiyasu, Tamada Kiichi, Sugano Kentaro, Mano Hiroyuki
Division of Functional Genomics, Jichi Medical School, Kawachi-gun, Tochigi, Japan.
Cancer Sci. 2005 Jul;96(7):387-93. doi: 10.1111/j.1349-7006.2005.00064.x.
Pancreatic ductal carcinoma (PDC) remains one of the most intractable human malignancies, mainly because of the lack of sensitive detection methods. Although gene expression profiling by DNA microarray analysis is a promising tool for the development of such detection systems, a simple comparison of pancreatic tissues may yield misleading data that reflect only differences in cellular composition. To directly compare PDC cells with normal pancreatic ductal cells, we purified MUC1-positive epithelial cells from the pancreatic juices of 25 individuals with a normal pancreas and 24 patients with PDC. The gene expression profiles of these 49 specimens were determined with DNA microarrays containing >44 000 probe sets. Application of both Welch's analysis of variance and effect size-based selection to the expression data resulted in the identification of 21 probe sets corresponding to 20 genes whose expression was highly associated with clinical diagnosis. Furthermore, correspondence analysis and 3-D projection with these probe sets resulted in separation of the transcriptomes of pancreatic ductal cells into distinct but overlapping spaces corresponding to the two clinical classes. To establish an accurate transcriptome-based diagnosis system for PDC, we applied supervised class prediction algorithms to our large data set. With the expression profiles of only five predictor genes, the weighted vote method diagnosed the class of samples with an accuracy of 81.6%. Microarray analysis with purified pancreatic ductal cells has thus provided a basis for the development of a sensitive method for the detection of PDC.
胰腺导管癌(PDC)仍然是最难治疗的人类恶性肿瘤之一,主要原因是缺乏灵敏的检测方法。尽管通过DNA微阵列分析进行基因表达谱分析是开发此类检测系统的一种很有前景的工具,但对胰腺组织进行简单比较可能会产生误导性数据,这些数据仅反映细胞组成的差异。为了直接比较PDC细胞与正常胰腺导管细胞,我们从25例胰腺正常个体和24例PDC患者的胰液中纯化出MUC1阳性上皮细胞。使用包含超过44000个探针集的DNA微阵列确定了这49个样本的基因表达谱。对表达数据应用韦尔奇方差分析和基于效应大小的选择,结果鉴定出21个对应于20个基因的探针集,其表达与临床诊断高度相关。此外,使用这些探针集进行对应分析和三维投影,导致胰腺导管细胞的转录组被分离到对应于两种临床类型的不同但重叠的空间中。为了建立基于转录组的准确的PDC诊断系统,我们将监督分类预测算法应用于我们的大数据集。仅使用五个预测基因的表达谱,加权投票法诊断样本类别的准确率为81.6%。因此,对纯化的胰腺导管细胞进行微阵列分析为开发一种灵敏的PDC检测方法提供了基础。