Suppr超能文献

近红外校准和预测情况下实现稳健温度补偿的低成本方法。

Low-cost approaches to robust temperature compensation in near-infrared calibration and prediction situations.

作者信息

Segtnan Vegard H, Mevik Bjørn-Helge, Isaksson Tomas, Naes Tormod

机构信息

MATFORSK--Norwegian Food Research Institute, Osloveien 1, N-1430 As, Norway.

出版信息

Appl Spectrosc. 2005 Jun;59(6):816-25. doi: 10.1366/0003702054280586.

Abstract

The traditional way of handling temperature shifts and other perturbations in calibration situations is to incorporate the non-relevant spectral variation in the calibration set by measuring the samples at various conditions. The present paper proposes two low-cost approaches based on simulation and prior knowledge about the perturbations, and these are compared to traditional methods. The first approach is based on augmentation of the calibration matrix through adding simulated noise on the spectra. The second approach is a correction method that removes the non-relevant variation from new spectra. Neither method demands exact knowledge of the perturbation levels. Using the augmentation method it was found that a few, in this case four, selected samples run under different conditions gave approximately the same robustness as running all the calibration samples under different conditions. For the carbohydrate data set, all robustification methods investigated worked well, including the use of pure water spectra for temperature compensation. For the more complex meat data set, only the augmentation method gave comparable results to the full global model.

摘要

在校准情况下,处理温度变化和其他干扰的传统方法是通过在各种条件下测量样品,将不相关的光谱变化纳入校准集。本文基于对干扰的模拟和先验知识提出了两种低成本方法,并将它们与传统方法进行比较。第一种方法是通过在光谱上添加模拟噪声来增强校准矩阵。第二种方法是一种校正方法,可从新光谱中去除不相关的变化。两种方法都不需要精确了解干扰水平。使用增强方法发现,在这种情况下,选择的几个(四个)在不同条件下运行的样品与在不同条件下运行所有校准样品具有大致相同的稳健性。对于碳水化合物数据集,所研究的所有稳健化方法都运行良好,包括使用纯水光谱进行温度补偿。对于更复杂的肉类数据集,只有增强方法给出了与完整全局模型相当的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验