Kamiya Atsunori, Kawada Toru, Yamamoto Kenta, Michikami Daisaku, Ariumi Hideto, Miyamoto Tadayoshi, Shimizu Shuji, Uemura Kazunori, Aiba Takeshi, Sunagawa Kenji, Sugimachi Masaru
Dept. of Cardiovascular Dynamics, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
Am J Physiol Heart Circ Physiol. 2005 Dec;289(6):H2641-8. doi: 10.1152/ajpheart.00642.2005. Epub 2005 Jul 29.
Despite accumulated knowledge on human baroreflex control of muscle sympathetic nerve activity (SNA), whether baroreflex control of muscle SNA parallels that of other SNAs, in particular renal and cardiac SNAs, remains unclear. Using urethane and alpha-chloralose-anesthetized, vagotomized and aortic-denervated rabbits (n = 10), we recorded muscle SNA from tibial nerve by microneurography, simultaneously with renal and cardiac SNAs by wire electrode. To produce a baroreflex open-loop condition, we isolated the carotid sinuses from systemic circulation and altered the intracarotid sinus pressure (CSP) according to a binary white noise sequence of operating pressure +/- 20 mmHg (for investigating dynamic characteristics of baroreflex) or in stepwise 20-mmHg increments from 40 to 160 mmHg (for investigating static characteristics of baroreflex). Dynamic high-pass characteristics of baroreflex control of muscle SNA, assessed by the increasing slope of transfer gain, showed that more rapid change of arterial pressure resulted in greater response of muscle SNA to pressure change and that these characteristics were similar to cardiac SNA but greater than renal SNA. However, numerical simulation based on the transfer function shows that the differences in dynamic baroreflex control at various organs result in detectable differences among SNAs only when CSP changes at unphysiologically high rates (i.e., 5 mmHg/s). On the other hand, static reverse-sigmoid characteristics of baroreflex control of muscle SNA agreed well with those of renal or cardiac SNAs. In conclusion, dynamic-linear and static-nonlinear baroreflex control of muscle SNA is similar to that of renal and cardiac SNAs under physiological pressure change.
尽管在人体压力反射对肌肉交感神经活动(SNA)的控制方面已有大量知识积累,但压力反射对肌肉SNA的控制是否与其他SNA(特别是肾和心脏SNA)的控制相似仍不清楚。我们使用乌拉坦和α-氯醛糖麻醉、迷走神经切断和主动脉去神经的兔子(n = 10),通过微神经ography从胫神经记录肌肉SNA,同时通过线电极记录肾和心脏SNA。为了产生压力反射开环状态,我们将颈动脉窦与体循环隔离,并根据工作压力±20 mmHg的二元白噪声序列(用于研究压力反射的动态特性)或从40 mmHg到160 mmHg以20 mmHg的步长递增(用于研究压力反射的静态特性)改变颈内窦压力(CSP)。通过传递增益增加斜率评估的压力反射对肌肉SNA控制的动态高通特性表明,动脉压变化越快,肌肉SNA对压力变化的反应越大,并且这些特性与心脏SNA相似但大于肾SNA。然而,基于传递函数的数值模拟表明,只有当CSP以非生理高频率(即5 mmHg/s)变化时,各器官动态压力反射控制的差异才会导致SNA之间出现可检测到的差异。另一方面,压力反射对肌肉SNA控制的静态反S形特性与肾或心脏SNA的特性非常吻合。总之,在生理压力变化下,肌肉SNA的动态线性和静态非线性压力反射控制与肾和心脏SNA的相似。