Suppr超能文献

荧光涨落光谱中的时间积分荧光累积量分析

Time-integrated fluorescence cumulant analysis in fluorescence fluctuation spectroscopy.

作者信息

Wu Bin, Müller Joachim D

机构信息

School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Biophys J. 2005 Oct;89(4):2721-35. doi: 10.1529/biophysj.105.063685. Epub 2005 Jul 29.

Abstract

We introduce a new analysis technique for fluorescence fluctuation data. Time-integrated fluorescence cumulant analysis (TIFCA) extracts information from the cumulants of the integrated fluorescence intensity. TIFCA builds on our earlier FCA theory, but in contrast to FCA or photon counting histogram (PCH) analysis is valid for arbitrary sampling times. The motivation for long sampling times lies in the improvement of the signal/noise ratio of the data. Because FCA and PCH theory are not valid in this regime, we first derive a theoretical model of cumulant functions for arbitrary sampling times. TIFCA is the first exact theory that describes the effects of sampling time on fluorescence fluctuation experiments. We calculate factorial cumulants of the photon counts for various sampling times by rebinning of the original data. Fits of the data to models determine the brightness, the occupation number, and the diffusion time of each species. To provide the tools for a rigorous error analysis of TIFCA, expressions for the variance of cumulants are developed and tested. We demonstrate that over a limited range rebinning reduces the relative error of higher order cumulants, and therefore improves the signal/noise ratio. The first four cumulant functions are explicitly calculated and are applied to simple dye systems to test the validity of TIFCA and demonstrate its ability to resolve species.

摘要

我们介绍了一种用于荧光涨落数据的新分析技术。时间积分荧光累积量分析(TIFCA)从积分荧光强度的累积量中提取信息。TIFCA基于我们早期的FCA理论构建,但与FCA或光子计数直方图(PCH)分析不同,它对任意采样时间均有效。采用长采样时间的动机在于提高数据的信噪比。由于FCA和PCH理论在此情况下无效,我们首先推导了任意采样时间下累积量函数的理论模型。TIFCA是首个描述采样时间对荧光涨落实验影响的精确理论。我们通过对原始数据重新分组来计算不同采样时间下光子计数的阶乘累积量。将数据拟合模型可确定每种物质的亮度、占据数和扩散时间。为了提供对TIFCA进行严格误差分析的工具,我们推导并测试了累积量方差的表达式。我们证明,在有限范围内重新分组可降低高阶累积量的相对误差,从而提高信噪比。我们明确计算了前四个累积量函数,并将其应用于简单染料系统,以检验TIFCA的有效性并展示其分辨不同物质的能力。

相似文献

1
Time-integrated fluorescence cumulant analysis in fluorescence fluctuation spectroscopy.
Biophys J. 2005 Oct;89(4):2721-35. doi: 10.1529/biophysj.105.063685. Epub 2005 Jul 29.
2
Cumulant analysis in fluorescence fluctuation spectroscopy.
Biophys J. 2004 Jun;86(6):3981-92. doi: 10.1529/biophysj.103.037887.
3
Time-integrated fluorescence cumulant analysis and its application in living cells.
Methods Enzymol. 2013;518:99-119. doi: 10.1016/B978-0-12-388422-0.00005-4.
4
Dual-color time-integrated fluorescence cumulant analysis.
Biophys J. 2006 Oct 1;91(7):2687-98. doi: 10.1529/biophysj.106.086181. Epub 2006 Jun 30.
5
Determining antibody stoichiometry using time-integrated fluorescence cumulant analysis.
J Phys Chem B. 2011 Feb 10;115(5):1131-8. doi: 10.1021/jp106279r. Epub 2010 Dec 30.
6
The photon counting histogram in fluorescence fluctuation spectroscopy.
Biophys J. 1999 Jul;77(1):553-67. doi: 10.1016/S0006-3495(99)76912-2.
7
Resolving fluorescent species by their brightness and diffusion using correlated photon-counting histograms.
PLoS One. 2019 Dec 30;14(12):e0226063. doi: 10.1371/journal.pone.0226063. eCollection 2019.
8
The photon counting histogram in fluorescence fluctuation spectroscopy with non-ideal photodetectors.
Biophys J. 2003 Sep;85(3):1948-58. doi: 10.1016/S0006-3495(03)74622-0.
9
Fluorescence cumulants analysis with non-ideal observation profiles.
Methods Appl Fluoresc. 2015 Nov 26;3(4):045003. doi: 10.1088/2050-6120/3/4/045003.
10
Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy.
Biophys J. 2002 Jan;82(1 Pt 1):133-44. doi: 10.1016/S0006-3495(02)75380-0.

引用本文的文献

1
Statistical analysis of the autocorrelation function in fluorescence correlation spectroscopy.
Biophys J. 2024 Mar 19;123(6):667-680. doi: 10.1016/j.bpj.2024.01.011. Epub 2024 Jan 12.
3
Autocorrelation function of finite-length data in fluorescence correlation spectroscopy.
Biophys J. 2023 Jan 3;122(1):241-253. doi: 10.1016/j.bpj.2022.10.027. Epub 2022 Oct 20.
5
Number and Brightness Analysis: Visualization of Protein Oligomeric State in Living Cells.
Adv Exp Med Biol. 2021;1310:31-58. doi: 10.1007/978-981-33-6064-8_2.
6
Resolving fluorescent species by their brightness and diffusion using correlated photon-counting histograms.
PLoS One. 2019 Dec 30;14(12):e0226063. doi: 10.1371/journal.pone.0226063. eCollection 2019.
7
Identifying Heteroprotein Complexes in the Nuclear Envelope.
Biophys J. 2020 Jan 7;118(1):26-35. doi: 10.1016/j.bpj.2019.11.020. Epub 2019 Nov 22.
8
Recent progress in single-molecule studies of mRNA localization .
RNA Biol. 2019 Sep;16(9):1108-1118. doi: 10.1080/15476286.2018.1536592. Epub 2018 Nov 14.
9
Protein oligomerization and mobility within the nuclear envelope evaluated by the time-shifted mean-segmented Q factor.
Methods. 2019 Mar 15;157:28-41. doi: 10.1016/j.ymeth.2018.09.008. Epub 2018 Sep 28.
10
Quantitative Brightness Analysis of Protein Oligomerization in the Nuclear Envelope.
Biophys J. 2017 Jul 11;113(1):138-147. doi: 10.1016/j.bpj.2017.05.044.

本文引用的文献

1
Dual-color photon-counting histogram.
Biophys J. 2005 Mar;88(3):2177-92. doi: 10.1529/biophysj.104.048413. Epub 2004 Dec 13.
2
Cumulant analysis in fluorescence fluctuation spectroscopy.
Biophys J. 2004 Jun;86(6):3981-92. doi: 10.1529/biophysj.103.037887.
3
Probing protein oligomerization in living cells with fluorescence fluctuation spectroscopy.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15492-7. doi: 10.1073/pnas.2533045100. Epub 2003 Dec 12.
4
Fluorescence correlation spectroscopy.
Methods Enzymol. 2003;361:69-92. doi: 10.1016/s0076-6879(03)61006-2.
5
Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy.
Biophys J. 2002 Oct;83(4):2300-17. doi: 10.1016/S0006-3495(02)73990-8.
7
Resolving heterogeneity on the single molecular level with the photon-counting histogram.
Biophys J. 2000 Jan;78(1):474-86. doi: 10.1016/S0006-3495(00)76610-0.
8
Fluorescence-intensity distribution analysis and its application in biomolecular detection technology.
Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13756-61. doi: 10.1073/pnas.96.24.13756.
9
The photon counting histogram in fluorescence fluctuation spectroscopy.
Biophys J. 1999 Jul;77(1):553-67. doi: 10.1016/S0006-3495(99)76912-2.
10
Resolution of fluorescence correlation measurements.
Biophys J. 1999 Mar;76(3):1619-31. doi: 10.1016/S0006-3495(99)77321-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验