Halverson Kelly M, Panchal Rekha G, Nguyen Tam L, Gussio Rick, Little Stephen F, Misakian Martin, Bavari Sina, Kasianowicz John J
United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702-5011, USA.
J Biol Chem. 2005 Oct 7;280(40):34056-62. doi: 10.1074/jbc.M507928200. Epub 2005 Aug 8.
The significant threat posed by biological agents (e.g. anthrax, tetanus, botulinum, and diphtheria toxins) (Inglesby, T. V., O'Toole, T., Henderson, D. A., Bartlett, J. G., Ascher, M. S., Eitzen, E., Friedlander, A. M., Gerberding, J., Hauer, J., Hughes, J., McDade, J., Osterholm, M. T., Parker, G., Perl, T. M., Russell, P. K., and Tonat, K. (2002) J. Am. Med. Assoc. 287, 2236-2252) requires innovative technologies and approaches to understand the mechanisms of toxin action and to develop better therapies. Anthrax toxins are formed from three proteins secreted by fully virulent Bacillus anthracis, protective antigen (PA, 83 kDa), lethal factor (LF, 90 kDa), and edema factor (EF, 89 kDa). Here we present electrophysiological measurements demonstrating that full-length LF and EF convert the current-voltage relationship of the heptameric PA63 ion channel from slightly nonlinear to highly rectifying and diode-like at pH 6.6. This effect provides a novel method for characterizing functional toxin interactions. The method confirms that a previously well characterized PA63 monoclonal antibody, which neutralizes anthrax lethal toxin in animals in vivo and in vitro, prevents the binding of LF to the PA63 pore. The technique can also detect the presence of anthrax lethal toxin complex from plasma of infected animals. The latter two results suggest the potential application of PA63 nanopore-based biosensors in anthrax therapeutics and diagnostics.
生物制剂(如炭疽毒素、破伤风毒素、肉毒杆菌毒素和白喉毒素)构成的重大威胁(英格尔斯比,T.V.,奥图尔,T.,亨德森,D.A.,巴特利特,J.G.,阿舍尔,M.S.,艾岑,E.,弗里德兰德,A.M.,格伯丁,J.,豪尔,J.,休斯,J.,麦克达德,J.,奥斯特霍尔姆,M.T.,帕克,G.,佩尔,T.M.,拉塞尔,P.K.,托纳特,K.(2002年)《美国医学会杂志》287卷,2236 - 2252页)需要创新技术和方法来理解毒素作用机制并开发更好的治疗方法。炭疽毒素由完全致病的炭疽芽孢杆菌分泌的三种蛋白质组成,即保护性抗原(PA,83 kDa)、致死因子(LF,90 kDa)和水肿因子(EF,89 kDa)。在此,我们展示了电生理测量结果,表明全长LF和EF在pH 6.6时将七聚体PA63离子通道的电流 - 电压关系从轻微非线性转变为高度整流且类似二极管。这种效应提供了一种表征功能性毒素相互作用的新方法。该方法证实,一种先前已充分表征的PA63单克隆抗体,其在体内和体外均可中和动物体内的炭疽致死毒素,可阻止LF与PA63孔的结合。该技术还可检测感染动物血浆中炭疽致死毒素复合物的存在。后两个结果表明基于PA63纳米孔的生物传感器在炭疽治疗和诊断中的潜在应用。