Van Mieghem Piet, van Langen Stijn
Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 2):056113. doi: 10.1103/PhysRevE.71.056113. Epub 2005 May 20.
The shortest path tree rooted at a source to all other nodes is investigated in a graph with polynomial link weights tunable by the power exponent alpha. By varying alpha, different types of shortest path trees, in short alpha trees, appear. Especially, the alpha --> 0 regime that corresponds to heavily fluctuating link weights possesses a peculiar type of tree. The most important properties of this alpha --> 0 tree are derived in the asymptotic limit for large N. The application of the theoretical insights to real networks (such as the Internet) are discussed: steering flow by adjusting link weights (traffic engineering), sensitivity of link weights and modeling of the network by alpha trees.
在一个具有可通过幂指数α调整的多项式链路权重的图中,研究了以源节点为根到所有其他节点的最短路径树。通过改变α,会出现不同类型的最短路径树,简称为α树。特别地,对应于链路权重剧烈波动的α→0状态具有一种特殊类型的树。在大N的渐近极限中推导了这种α→0树的最重要性质。讨论了将这些理论见解应用于实际网络(如互联网)的情况:通过调整链路权重来引导流量(流量工程)、链路权重的敏感性以及用α树对网络进行建模。