Kretschmer M, Khrapak S A, Zhdanov S K, Thomas H M, Morfill G E, Fortov V E, Lipaev A M, Molotkov V I, Ivanov A I, Turin M V
Centre for Interdisciplinary Plasma Science, Max-Planck-Institut für extraterrestrische Physik, D-85741 Garching, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 2):056401. doi: 10.1103/PhysRevE.71.056401. Epub 2005 May 2.
Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the "trampoline effect"). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force.
报道了在国际空间站上利用“等离子体 - 晶体”实验 - 涅斯捷罗夫装置在微重力条件下对复杂等离子体的观测结果。在低气压下,观察到中央空洞(无微颗粒区域)与微颗粒云之间边界的微弱不稳定性。这种不稳定性导致相对少量的颗粒周期性地注入到空洞区域(类推此效应称为“蹦床效应”)。分析了注入颗粒的轨迹,提供了关于空洞内部力场的信息。将实验结果与理论进行了比较,该理论假设空洞内部最重要的力是电场力和离子拖曳力。发现两者吻合良好,清楚地表明在所研究的条件下,空洞的形成是由离子拖曳力引起的。