Tsipis Athanassios C, Orpen A Guy, Harvey Jeremy N
School of Chemistry, University of Bristol, Cantock's Close, Bristol, UK BS8 1TS.
Dalton Trans. 2005 Sep 7(17):2849-58. doi: 10.1039/b506929g. Epub 2005 Jul 20.
Density functional theory calculations are reported concerning the dissociative mechanism for alkene metathesis by ruthenium dichloride catalysts, including both bisphosphine and diaminocarbene/phosphine complexes. The calculations use a hierarchy of models, ranging from (L)(PH(3))Ru(Cl)(2)(CH(2)) or diaminocarbene) through the larger [(L)(PMe(3))Ru(Cl)(2)(CHPh)] to the "real"[(L)(PCy(3))Ru(Cl)(2)(CHPh)]. Calculations show that the rate-limiting step for metathesis is either ring closing from an alkene complex to form a ruthena-cyclobutane, or ring-opening of the latter intermediate to form an isomeric alkene complex. The higher efficiency of the diaminocarbene based catalysts is due to the stabilization of the formal +iv oxidation state of the ruthenium centre in the metallacycle. This effect is partly masked in the smaller model systems due to a previously unnoticed stereoelectronic effect. The calculations do not reproduce the experimental observation whereby the initiation step, phosphine dissociation, is more energetically demanding and hence slower for the diaminocarbene-containing catalyst system than for the bisphosphine. Further calculations on the corresponding bond energies using a variety of DFT and hybrid DFT/molecular mechanics methods all find instead a larger phosphine dissociation energy for the bisphosphine catalyst. This reversed order of binding energies would in fact be the one expected based on the stronger trans influence of the diaminocarbene ligand. The discrepancy with experiment is small and could have a number of causes which are discussed here.
报道了关于二氯化钌催化剂催化烯烃复分解反应解离机理的密度泛函理论计算,该催化剂包括双膦和二氨基卡宾/膦配合物。计算使用了一系列模型,从[(L)(PH(3))Ru(Cl)(2)(CH(2))](L = PH(3)或二氨基卡宾)到更大的[(L)(PMe(3))Ru(Cl)(2)(CHPh)],再到“真实的”[(L)(PCy(3))Ru(Cl)(2)(CHPh)]。计算表明,复分解反应的限速步骤要么是从烯烃配合物闭环形成钌环丁烷,要么是后者中间体开环形成异构烯烃配合物。基于二氨基卡宾的催化剂效率更高,这是由于金属环中钌中心的形式+iv氧化态得到了稳定。由于之前未被注意到的立体电子效应,这种效应在较小的模型系统中部分被掩盖。计算结果没有重现实验观察结果,即引发步骤,膦解离,对于含二氨基卡宾的催化剂体系来说,在能量上要求更高,因此比双膦催化剂更慢。使用各种密度泛函理论和混合密度泛函理论/分子力学方法对相应键能进行的进一步计算都发现,双膦催化剂的膦解离能更大。事实上,基于二氨基卡宾配体更强的反位影响,这种结合能的相反顺序是预期的。与实验的差异很小,可能有多种原因,本文对此进行了讨论。