Tognalli N, Fainstein A, Calvo E, Bonazzola C, Pietrasanta L, Campoy-Quiles M, Etchegoin P
Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica, 8400 San Carlos de Bariloche, Río Negro, Argentina.
J Chem Phys. 2005 Jul 22;123(4):044707. doi: 10.1063/1.1954707.
We present a detailed structural and surface-enhanced Raman scattering (SERS) study of poly(allylamine) modified with Os(byp)2ClPyCHO (PAH-Os) and gold nanoparticles self-assembled multilayers [PAH-Os+(Au-nanoparticlesPAH-Os)n, n=1 and 5]. Atomic force microscopy and variable-angle spectroscopic ellipsometry measurements indicate that the first nanoparticle layer grows homogenously by partially covering the substrate without clustering. Analyzing the sample thickness and roughness we infer that the growth process advances thereafter by filling with nanoparticles the interstitial spaces between the previously adsorbed nanoparticles. After five immersion steps the multilayers reach a more compact structure. The interaction between plasmons of near-gold nanoparticles provides a new optical absorption around 650 nm which, in addition, allows a more effective SERS process in that spectral region than at the single-plasmon resonance (approximately 530 nm). We compare the electronic resonance Raman and SERS amplification mechanisms in these self-assembled multilayers analyzing Raman resonance scans and Raman intensity micromaps. As a function of nanoparticle coverage we observe large changes in the Raman intensity scans, with maxima that shift from the electronic transitions, to the plasmon resonance, and finally to the coupled-plasmon absorption. The Raman micromaps, on the other hand, evidence huge intensity inhomogeneities which we relate to "hot spots." Numerical discrete dipole approximation calculations including the interaction between gold nanoparticles are presented, providing a qualitative model for the coupled-plasmon absorption and redshifted Raman hot spots in these samples.
我们展示了对用Os(byp)2ClPyCHO修饰的聚烯丙胺(PAH-Os)和金纳米颗粒自组装多层膜[PAH-Os+(Au-纳米颗粒/PAH-Os)n,n = 1和5]进行的详细结构和表面增强拉曼散射(SERS)研究。原子力显微镜和可变角度光谱椭偏测量表明,第一层纳米颗粒通过部分覆盖基底而均匀生长,没有聚集。通过分析样品厚度和粗糙度,我们推断此后的生长过程是通过用纳米颗粒填充先前吸附的纳米颗粒之间的间隙来推进的。经过五个浸入步骤后,多层膜达到更致密的结构。近金纳米颗粒的等离子体之间的相互作用在650 nm左右提供了一种新的光吸收,此外,与单等离子体共振(约530 nm)相比,在该光谱区域允许更有效的SERS过程。我们通过分析拉曼共振扫描和拉曼强度微图,比较了这些自组装多层膜中的电子共振拉曼和SERS放大机制。作为纳米颗粒覆盖率的函数,我们观察到拉曼强度扫描有很大变化,最大值从电子跃迁转移到等离子体共振,最后转移到耦合等离子体吸收。另一方面,拉曼微图显示出巨大的强度不均匀性,我们将其与“热点”相关联。给出了包括金纳米颗粒之间相互作用的数值离散偶极近似计算,为这些样品中的耦合等离子体吸收和红移拉曼热点提供了一个定性模型。