Suppr超能文献

梗阻性肾病:来自基因工程动物的见解

Obstructive nephropathy: insights from genetically engineered animals.

作者信息

Bascands Jean-Loup, Schanstra Joost P

机构信息

Inserm U388, Institut Louis Bugnard, Touluse cedex, France.

出版信息

Kidney Int. 2005 Sep;68(3):925-37. doi: 10.1111/j.1523-1755.2005.00486.x.

Abstract

Congenital obstructive nephropathy is the primary cause for end-stage renal disease (ESRD) in children. An increasingly used animal model of obstructive nephropathy is unilateral ureteral obstruction (UUO). This model mimics, in an accelerated manner, the different stages of obstructive nephropathy leading to tubulointerstitial fibrosis: cellular infiltration, tubular proliferation and apoptosis, epithelial-mesenchymal transition (EMT), (myo)fibroblast accumulation, increased extracellular matrix (ECM) deposition, and tubular atrophy. During the last decade genetically modified animals are increasingly used to study the development of obstructive nephropathy. Although the use of these animals (mainly knockouts) has highlighted some pitfalls of this approach (compensation by closely related gene products, absence of temporal knockouts) it has brought important information about the role of specific gene-products in the pathogenesis of obstructive nephropathy. Besides confirming the important pathologic role for angiotensin II (Ang II) and transforming growth factor-beta (TGF-beta) in obstructive nephropathy, these animals have shown the complexity of the development of tubulointerstitial fibrosis involving a large number of closely functionally related molecules. More interestingly, the use of these animals has led to the discovery of unexpected and contradictory roles (both potentially pro- and antifibrotic) for Ang II, for ECM degrading enzymes matrix metalloproteinase 9 (MMP-9) and tissue plasminogen activators (PAs), for plasminogen activator inhibitor 1 (PAI-1), and for the adhesion molecule osteopontin (OPN) in obstructive nephropathy. Further use of these animals, especially in combination with pharmacologic tools, should help to better identify potential antifibrotic strategies in obstructive nephropathy.

摘要

先天性梗阻性肾病是儿童终末期肾病(ESRD)的主要病因。越来越常用的梗阻性肾病动物模型是单侧输尿管梗阻(UUO)。该模型以加速的方式模拟梗阻性肾病导致肾小管间质纤维化的不同阶段:细胞浸润、肾小管增殖和凋亡、上皮-间质转化(EMT)、(肌)成纤维细胞积聚、细胞外基质(ECM)沉积增加以及肾小管萎缩。在过去十年中,转基因动物越来越多地用于研究梗阻性肾病的发展。尽管使用这些动物(主要是基因敲除动物)凸显了这种方法的一些缺陷(由密切相关的基因产物进行补偿、缺乏时间性基因敲除),但它带来了关于特定基因产物在梗阻性肾病发病机制中作用的重要信息。除了证实血管紧张素II(Ang II)和转化生长因子-β(TGF-β)在梗阻性肾病中的重要病理作用外,这些动物还显示了肾小管间质纤维化发展的复杂性,涉及大量功能密切相关的分子。更有趣的是,使用这些动物导致发现了Ang II、ECM降解酶基质金属蛋白酶9(MMP-9)和组织纤溶酶原激活剂(PAs)、纤溶酶原激活剂抑制剂1(PAI-1)以及黏附分子骨桥蛋白(OPN)在梗阻性肾病中意想不到且相互矛盾的作用(既有潜在的促纤维化作用,也有抗纤维化作用)。进一步使用这些动物,尤其是与药理学工具结合使用,应有助于更好地确定梗阻性肾病潜在的抗纤维化策略。

相似文献

1
Obstructive nephropathy: insights from genetically engineered animals.
Kidney Int. 2005 Sep;68(3):925-37. doi: 10.1111/j.1523-1755.2005.00486.x.
2
The renal lesions that develop in neonatal mice during angiotensin inhibition mimic obstructive nephropathy.
Kidney Int. 1999 May;55(5):1683-95. doi: 10.1046/j.1523-1755.1999.00420.x.
4
Obstructive uropathy in the mouse: role of osteopontin in interstitial fibrosis and apoptosis.
Kidney Int. 1999 Aug;56(2):571-80. doi: 10.1046/j.1523-1755.1999.00580.x.
5
Recovery following relief of unilateral ureteral obstruction in the neonatal rat.
Kidney Int. 1999 Mar;55(3):793-807. doi: 10.1046/j.1523-1755.1999.055003793.x.
6
TIMP-1 gene expression and PAI-1 antigen after unilateral ureteral obstruction in the adult male rat.
Kidney Int. 2000 Sep;58(3):1186-201. doi: 10.1046/j.1523-1755.2000.00274.x.
8
Effects of ureteral obstruction on renal growth.
Semin Nephrol. 1995 Jul;15(4):353-60.
9
Osteopontin regulates renal apoptosis and interstitial fibrosis in neonatal chronic unilateral ureteral obstruction.
Kidney Int. 2006 Nov;70(10):1735-41. doi: 10.1038/sj.ki.5000357. Epub 2006 Sep 27.
10
Obstructive nephropathy and renal fibrosis.
Am J Physiol Renal Physiol. 2002 Nov;283(5):F861-75. doi: 10.1152/ajprenal.00362.2001.

引用本文的文献

1
Panaxatriol saponins exert anti-renal fibrosis by suppressing TNF-α mediated inflammation and TGF-β1/Smad3 signaling pathway.
Ren Fail. 2025 Dec;47(1):2516774. doi: 10.1080/0886022X.2025.2516774. Epub 2025 Jun 19.
2
Advances in cellular senescence in idiopathic pulmonary fibrosis (Review).
Exp Ther Med. 2023 Feb 15;25(4):145. doi: 10.3892/etm.2023.11844. eCollection 2023 Apr.
4
Identification of circular RNA expression profiles in renal fibrosis induced by obstructive injury.
Ren Fail. 2021 Dec;43(1):1368-1377. doi: 10.1080/0886022X.2021.1979040.
8
The Genomic Response to TGF-β1 Dictates Failed Repair and Progression of Fibrotic Disease in the Obstructed Kidney.
Front Cell Dev Biol. 2021 Jul 2;9:678524. doi: 10.3389/fcell.2021.678524. eCollection 2021.
10
Heme Oxygenase 1: A Defensive Mediator in Kidney Diseases.
Int J Mol Sci. 2021 Feb 18;22(4):2009. doi: 10.3390/ijms22042009.

本文引用的文献

1
Bradykinin and renal fibrosis: have we ACE'd it?
J Am Soc Nephrol. 2004 Sep;15(9):2504-6. doi: 10.1097/01.ASN.0000143721.71748.30.
3
Plasmin is not protective in experimental renal interstitial fibrosis.
Kidney Int. 2004 Jul;66(1):68-76. doi: 10.1111/j.1523-1755.2004.00707.x.
4
CD44 deficiency increases tubular damage but reduces renal fibrosis in obstructive nephropathy.
J Am Soc Nephrol. 2004 Mar;15(3):674-86. doi: 10.1097/01.asn.0000115703.30835.96.
7
Epithelial-mesenchymal transition and its implications for fibrosis.
J Clin Invest. 2003 Dec;112(12):1776-84. doi: 10.1172/JCI20530.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验