Suppr超能文献

培养的人类细胞中L1逆转录转座中间体的多种命运

Multiple fates of L1 retrotransposition intermediates in cultured human cells.

作者信息

Gilbert Nicolas, Lutz Sheila, Morrish Tammy A, Moran John V

机构信息

Department of Human Genetics, University of Michigan Medical School, Ann Arbor, 48109-0618, USA.

出版信息

Mol Cell Biol. 2005 Sep;25(17):7780-95. doi: 10.1128/MCB.25.17.7780-7795.2005.

Abstract

LINE-1 (L1) retrotransposons comprise approximately 17% of human DNA, yet little is known about L1 integration. Here, we characterized 100 retrotransposition events in HeLa cells and show that distinct DNA repair pathways can resolve L1 cDNA retrotransposition intermediates. L1 cDNA resolution can lead to various forms of genetic instability including the generation of chimeric L1s, intrachromosomal deletions, intrachromosomal duplications, and intra-L1 rearrangements as well as a possible interchromosomal translocation. The L1 retrotransposition machinery also can mobilize U6 snRNA to new genomic locations, increasing the repertoire of noncoding RNAs that are mobilized by L1s. Finally, we have determined that the L1 reverse transcriptase can faithfully replicate its own transcript and has a base misincorporation error rate of approximately 1/7,000 bases. These data indicate that L1 retrotransposition in transformed human cells can lead to a variety of genomic rearrangements and suggest that host processes act to restrict L1 integration in cultured human cells. Indeed, the initial steps in L1 retrotransposition may define a host/parasite battleground that serves to limit the number of active L1s in the genome.

摘要

长散在核元件1(LINE-1,L1)逆转座子约占人类DNA的17%,但人们对L1整合了解甚少。在此,我们对HeLa细胞中的100个逆转座事件进行了表征,结果表明,不同的DNA修复途径可解析L1 cDNA逆转座中间体。L1 cDNA的解析可导致多种形式的基因不稳定,包括嵌合L1的产生、染色体内缺失、染色体内重复、L1内重排以及可能的染色体间易位。L1逆转座机制还可将U6小核RNA(snRNA)转移至新的基因组位置,增加了由L1转移的非编码RNA种类。最后,我们确定L1逆转录酶能够忠实地复制其自身的转录本,碱基错配错误率约为1/7000个碱基。这些数据表明,转化的人类细胞中的L1逆转座可导致多种基因组重排,并提示宿主过程可限制培养的人类细胞中的L1整合。事实上,L1逆转座的初始步骤可能定义了一个宿主/寄生虫战场,其作用是限制基因组中活跃L1的数量。

相似文献

1
Multiple fates of L1 retrotransposition intermediates in cultured human cells.
Mol Cell Biol. 2005 Sep;25(17):7780-95. doi: 10.1128/MCB.25.17.7780-7795.2005.
2
Genomic deletions created upon LINE-1 retrotransposition.
Cell. 2002 Aug 9;110(3):315-25. doi: 10.1016/s0092-8674(02)00828-0.
3
Human l1 retrotransposition is associated with genetic instability in vivo.
Cell. 2002 Aug 9;110(3):327-38. doi: 10.1016/s0092-8674(02)00839-5.
4
RNA ligation precedes the retrotransposition of U6/LINE-1 chimeric RNA.
Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20612-20622. doi: 10.1073/pnas.1805404116. Epub 2019 Sep 23.
5
Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres.
Nature. 2007 Mar 8;446(7132):208-12. doi: 10.1038/nature05560.
6
Frequent human genomic DNA transduction driven by LINE-1 retrotransposition.
Genome Res. 2000 Apr;10(4):411-5. doi: 10.1101/gr.10.4.411.
7
L1 integration in a transgenic mouse model.
Genome Res. 2006 Feb;16(2):240-50. doi: 10.1101/gr.4571606. Epub 2005 Dec 19.
8
Exon shuffling by L1 retrotransposition.
Science. 1999 Mar 5;283(5407):1530-4. doi: 10.1126/science.283.5407.1530.
9
Human L1 retrotransposition: cis preference versus trans complementation.
Mol Cell Biol. 2001 Feb;21(4):1429-39. doi: 10.1128/MCB.21.4.1429-1439.2001.
10
De novo LINE-1 retrotransposition in HepG2 cells preferentially targets gene poor regions of chromosome 13.
Genomics. 2014 Aug;104(2):96-104. doi: 10.1016/j.ygeno.2014.07.001. Epub 2014 Jul 17.

引用本文的文献

1
Identification of a minimal Alu domain required for retrotransposition.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf526.
3
Structural mechanism of LINE-1 target-primed reverse transcription.
Science. 2025 Apr 25;388(6745):eads8412. doi: 10.1126/science.ads8412.
4
Comparative Genomics Reveals LINE-1 Recombination with Diverse RNAs.
bioRxiv. 2025 Feb 3:2025.02.02.635956. doi: 10.1101/2025.02.02.635956.
5
Identification of a minimal domain required for retrotransposition.
bioRxiv. 2024 Dec 16:2024.12.16.628748. doi: 10.1101/2024.12.16.628748.
6
Chromosomal rearrangements and instability caused by the LINE-1 retrotransposon.
bioRxiv. 2024 Dec 17:2024.12.14.628481. doi: 10.1101/2024.12.14.628481.
7
Retrotransposon life cycle and its impacts on cellular responses.
RNA Biol. 2024 Jan;21(1):11-27. doi: 10.1080/15476286.2024.2409607. Epub 2024 Oct 13.
10
Fanconi anemia DNA crosslink repair factors protect against LINE-1 retrotransposition during mouse development.
Nat Struct Mol Biol. 2023 Oct;30(10):1434-1445. doi: 10.1038/s41594-023-01067-8. Epub 2023 Aug 14.

本文引用的文献

2
The structures of mouse and human L1 elements reflect their insertion mechanism.
Cytogenet Genome Res. 2005;110(1-4):223-8. doi: 10.1159/000084956.
3
Abortive transposition by a group II intron in yeast mitochondria.
Genetics. 2004 Sep;168(1):77-87. doi: 10.1534/genetics.104.027003.
4
A YY1-binding site is required for accurate human LINE-1 transcription initiation.
Nucleic Acids Res. 2004 Jul 22;32(13):3846-55. doi: 10.1093/nar/gkh698. Print 2004.
5
Cell type-specific expression of LINE-1 open reading frames 1 and 2 in fetal and adult human tissues.
J Biol Chem. 2004 Jun 25;279(26):27753-63. doi: 10.1074/jbc.M312985200. Epub 2004 Mar 31.
6
A potential role for the nucleolus in L1 retrotransposition.
Hum Mol Genet. 2004 May 15;13(10):1041-8. doi: 10.1093/hmg/ddh118. Epub 2004 Mar 17.
7
More active human L1 retrotransposons produce longer insertions.
Nucleic Acids Res. 2004 Jan 23;32(2):502-10. doi: 10.1093/nar/gkh202. Print 2004.
8
Allelic heterogeneity in LINE-1 retrotransposition activity.
Am J Hum Genet. 2003 Dec;73(6):1431-7. doi: 10.1086/379744. Epub 2003 Nov 7.
9
The unusual phylogenetic distribution of retrotransposons: a hypothesis.
Genome Res. 2003 Sep;13(9):1975-83. doi: 10.1101/gr.1392003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验