Suppr超能文献

数据挖掘在药物警戒中的作用。

The role of data mining in pharmacovigilance.

作者信息

Hauben Manfred, Madigan David, Gerrits Charles M, Walsh Louisa, Van Puijenbroek Eugene P

机构信息

Pfizer, Inc., Risk Management Strategy, New York, NY, USA.

出版信息

Expert Opin Drug Saf. 2005 Sep;4(5):929-48. doi: 10.1517/14740338.4.5.929.

Abstract

A principle concern of pharmacovigilance is the timely detection of adverse drug reactions that are novel by virtue of their clinical nature, severity and/or frequency. The cornerstone of this process is the scientific acumen of the pharmacovigilance domain expert. There is understandably an interest in developing database screening tools to assist human reviewers in identifying associations worthy of further investigation (i.e., signals) embedded within a database consisting largely of background 'noise' containing reports of no substantial public health significance. Data mining algorithms are, therefore, being developed, tested and/or used by health authorities, pharmaceutical companies and academic researchers. After a focused review of postapproval drug safety signal detection, the authors explain how the currently used algorithms work and address key questions related to their validation, comparative performance, deployment in naturalistic pharmacovigilance settings, limitations and potential for misuse. Suggestions for further research and development are offered.

摘要

药物警戒的一个主要关注点是及时发现因其临床性质、严重程度和/或频率而新颖的药物不良反应。这一过程的基石是药物警戒领域专家的科学敏锐性。开发数据库筛选工具以协助人工审核员识别隐藏在主要由不具有重大公共卫生意义报告的背景“噪音”组成的数据库中的值得进一步调查的关联(即信号),这是可以理解的。因此,卫生当局、制药公司和学术研究人员正在开发、测试和/或使用数据挖掘算法。在对批准后药物安全信号检测进行重点综述后,作者解释了当前使用的算法如何工作,并解决了与其验证、比较性能、在自然药物警戒环境中的应用、局限性和潜在滥用相关的关键问题。还提供了进一步研究和开发的建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验