Yang Ning, Chaudhry M Ahmad, Wallace Susan S
Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Stafford Hall, Burlington, VT 05405-0068, USA.
DNA Repair (Amst). 2006 Jan 5;5(1):43-51. doi: 10.1016/j.dnarep.2005.07.003. Epub 2005 Aug 18.
Using siRNA technology, we down-regulated in human B-lymphoblastoid TK6 cells the two major oxidative DNA glycosylases/AP lyases that repair free radical-induced base damages, hNTH1 and hOGG1. The down-regulation of hOGG1, the DNA glycosylase whose main substrate is the mutagenic but not cytotoxic 8-oxoguanine, resulted in reduced radiation cytotoxicity and decreased double strand break (DSB) formation post-irradiation. This supports the idea that the oxidative DNA glycosylases/AP lyases convert radiation-induced clustered DNA lesions into lethal DSBs and is in agreement with our previous finding that overexpression of hNTH1 and hOGG1 in TK6 cells increased radiation lethality, mutant frequency at the thymidine kinase locus and the enzymatic production of DSBs post-irradiation [N. Yang, H. Galick, S.S. Wallace, Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks, DNA Repair (Amst) 3 (2004) 1323-1334]. Interestingly, cells deficient in hNTH1, the DNA glycosylase that repairs a major lethal single free radical damage, thymine glycol, were more radiosensitive but at the same time fewer DSBs were formed post-irradiation. These results indicate that hNTH1 plays two roles in the processing of radiation damages: repair of potentially lethal single lesions and generation of lethal DSBs at clustered damage sites. In contrast, in hydrogen peroxide-treated cells where the majority of free radical DNA damages are single lesions, the base excision repair pathway functioned to protect the cells. Here, overexpression of hNTH1 and hOGG1 resulted in reduced cell killing while suppression of glycosylase expression resulted in elevated cell death.
利用小干扰RNA(siRNA)技术,我们在人B淋巴母细胞TK6细胞中下调了两种主要的氧化DNA糖基化酶/AP裂解酶,即hNTH1和hOGG1,它们负责修复自由基诱导的碱基损伤。hOGG1的主要底物是具有致突变性但无细胞毒性的8-氧鸟嘌呤,hOGG1的下调导致辐射细胞毒性降低以及辐射后双链断裂(DSB)形成减少。这支持了氧化DNA糖基化酶/AP裂解酶将辐射诱导的簇状DNA损伤转化为致死性DSB的观点,并且与我们之前在TK6细胞中过表达hNTH1和hOGG1会增加辐射致死率、胸苷激酶位点的突变频率以及辐射后DSB的酶促产生的发现一致[杨N,加利克H,华莱士S.S.,人淋巴母细胞中电离辐射损伤的碱基切除修复尝试产生致死性和致突变性双链断裂,《DNA修复》(阿姆斯特丹)3(2004)1323 - 1334]。有趣的是,缺乏hNTH1(负责修复主要的致死性单个自由基损伤——胸腺嘧啶乙二醇的DNA糖基化酶)的细胞对辐射更敏感,但同时辐射后形成的DSB更少。这些结果表明,hNTH1在辐射损伤处理中发挥两种作用:修复潜在的致死性单个损伤以及在簇状损伤位点产生致死性DSB。相比之下,在过氧化氢处理的细胞中,大多数自由基DNA损伤是单个损伤,碱基切除修复途径起到保护细胞的作用。在这里,hNTH1和hOGG1的过表达导致细胞杀伤减少,而糖基化酶表达的抑制导致细胞死亡增加。