Suppr超能文献

放弃电中性并非毫无代价:开启钠耦联磷酸盐共转运体中的电生性。

Renouncing electroneutrality is not free of charge: switching on electrogenicity in a Na+-coupled phosphate cotransporter.

作者信息

Bacconi Andrea, Virkki Leila V, Biber Jürg, Murer Heini, Forster Ian C

机构信息

Institute of Physiology and Center for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12606-11. doi: 10.1073/pnas.0505882102. Epub 2005 Aug 19.

Abstract

Renal type IIa Na+-coupled inorganic phosphate (Pi) cotransporters (NaPi-IIa) mediate divalent Pi transport in an electrogenic manner, whereas the renal type IIc isoform (NaPi-IIc) is electroneutral, yet it shows high sequence identity with NaPi-IIa. Dual uptake (32Pi/22Na) assays confirmed that NaPi-IIc displayed Na+-coupled Pi cotransport with a 2:1 (Na+:Pi) stoichiometry compared with 3:1 established for NaPi-IIa. This finding suggested that the electrogenicity of NaPi-IIa arises from the interaction of an additional Na+ ion compared with NaPi-IIc. To identify the molecular elements responsible for the functional difference between isoforms, we used chimera and amino acid replacement approaches. Transport activity of chimeras constructed with NaPi-IIa and NaPi-IIc indicated that residues within the first six transmembrane domains were essential for the electrogenicity of NaPi-IIa. Sequence comparison between electrogenic and electroneutral isoforms revealed differences in the charge and polarity of residues clustered in three areas, one of which included part of the predicted third transmembrane domain. Here, substitution of three residues with their NaPi-IIa equivalents in NaPi-IIc (S189A, S191A, and G195D) resulted in a transporter that displayed a 1:1 charge/Pi coupling, a 3:1 Na+:Pi stoichiometry, and transient currents that resembled pre-steady-state relaxations. The mutant's weaker voltage dependency and 10-fold lower apparent Pi affinity compared with NaPi-IIa indicated that other residues important for the NaPi-IIa kinetic fingerprint exist. Our findings demonstrate that, through a minimal number of side chain substitutions, we can effect a switch from electroneutral to electrogenic cotransporter function, concomitant with the appearance of a cosubstrate interaction site.

摘要

肾IIa型钠偶联无机磷酸盐(Pi)共转运体(NaPi-IIa)以电生方式介导二价Pi转运,而肾IIc亚型(NaPi-IIc)是电中性的,但它与NaPi-IIa具有高度的序列同一性。双重摄取(32Pi/22Na)试验证实,与NaPi-IIa确定的3:1化学计量比相比,NaPi-IIc以2:1(Na+:Pi)化学计量比显示钠偶联Pi共转运。这一发现表明,与NaPi-IIc相比,NaPi-IIa的电生性源于一个额外的Na+离子的相互作用。为了确定负责亚型之间功能差异的分子元件,我们使用了嵌合体和氨基酸替换方法。用NaPi-IIa和NaPi-IIc构建的嵌合体的转运活性表明,前六个跨膜结构域内的残基对于NaPi-IIa的电生性至关重要。电生和电中性亚型之间的序列比较揭示了聚集在三个区域的残基在电荷和极性上的差异,其中一个区域包括预测的第三个跨膜结构域的一部分。在这里,用NaPi-IIc中的三个残基替换为其NaPi-IIa等效物(S189A、S191A和G195D)产生了一种转运体,其显示出1:1的电荷/Pi偶联、3:1的Na+:Pi化学计量比以及类似于预稳态弛豫的瞬态电流。与NaPi-IIa相比,该突变体较弱的电压依赖性和低10倍的表观Pi亲和力表明,存在对NaPi-IIa动力学指纹重要的其他残基。我们的研究结果表明,通过最少数量的侧链替换,我们可以实现从电中性到电生性共转运体功能的转变,并伴随着共底物相互作用位点的出现。

相似文献

1
Renouncing electroneutrality is not free of charge: switching on electrogenicity in a Na+-coupled phosphate cotransporter.
Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12606-11. doi: 10.1073/pnas.0505882102. Epub 2005 Aug 19.
2
Conferring electrogenicity to the electroneutral phosphate cotransporter NaPi-IIc (SLC34A3) reveals an internal cation release step.
Pflugers Arch. 2013 Sep;465(9):1261-79. doi: 10.1007/s00424-013-1261-9. Epub 2013 Mar 21.
4
Substrate interactions in the human type IIa sodium-phosphate cotransporter (NaPi-IIa).
Am J Physiol Renal Physiol. 2005 May;288(5):F969-81. doi: 10.1152/ajprenal.00293.2004. Epub 2004 Dec 21.
5
Amino acids involved in sodium interaction of murine type II Na(+)-P(i) cotransporters expressed in Xenopus oocytes.
J Physiol. 2001 Mar 1;531(Pt 2):383-91. doi: 10.1111/j.1469-7793.2001.0383i.x.
6
Identification of the first sodium binding site of the phosphate cotransporter NaPi-IIa (SLC34A1).
Biophys J. 2015 May 19;108(10):2465-2480. doi: 10.1016/j.bpj.2015.03.054.
7
Substrate interactions of the electroneutral Na+-coupled inorganic phosphate cotransporter (NaPi-IIc).
J Physiol. 2009 Sep 1;587(Pt 17):4293-307. doi: 10.1113/jphysiol.2009.175596. Epub 2009 Jul 13.
10
Electrogenic kinetics of a mammalian intestinal type IIb Na(+)/P(i) cotransporter.
J Membr Biol. 2006;212(3):177-90. doi: 10.1007/s00232-006-0016-3. Epub 2007 Mar 6.

引用本文的文献

1
A case report of pulmonary alveolar microlithiasis with pulmonary tuberculosis.
Lung India. 2023 Mar-Apr;40(2):161-164. doi: 10.4103/lungindia.lungindia_276_22.
2
The "www" of Oocytes: The Why, When, What of Oocytes in Membrane Transporters Research.
Membranes (Basel). 2022 Sep 25;12(10):927. doi: 10.3390/membranes12100927.
3
Sequence analysis and function of mosquito aeCCC2 and Drosophila Ncc83 orthologs.
Insect Biochem Mol Biol. 2022 Apr;143:103729. doi: 10.1016/j.ibmb.2022.103729. Epub 2022 Feb 9.
4
Renal Contributions to Age-Related Changes in Mineral Metabolism.
JBMR Plus. 2021 Jun 3;5(10):e10517. doi: 10.1002/jbm4.10517. eCollection 2021 Oct.
5
Topology, tissue distribution, and transcriptional level of SLC34s in response to Pi and pH in grass carp Ctenopharyngodon idella.
Fish Physiol Biochem. 2021 Oct;47(5):1383-1393. doi: 10.1007/s10695-021-00981-2. Epub 2021 Jul 20.
6
Pulmonary Alveolar Microlithiasis.
Semin Respir Crit Care Med. 2020 Apr;41(2):280-287. doi: 10.1055/s-0040-1702211. Epub 2020 Apr 12.
7
Evaluating pathogenicity of SLC34A3-Ser192Leu, a frequent European missense variant in disorders of renal phosphate wasting.
Urolithiasis. 2019 Dec;47(6):511-519. doi: 10.1007/s00240-019-01116-2. Epub 2019 Feb 23.
8
Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi).
Pflugers Arch. 2019 Jan;471(1):83-98. doi: 10.1007/s00424-018-2231-z. Epub 2018 Nov 5.
9
The molecular mechanism of SLC34 proteins: insights from two decades of transport assays and structure-function studies.
Pflugers Arch. 2019 Jan;471(1):15-42. doi: 10.1007/s00424-018-2207-z. Epub 2018 Sep 22.
10
Structural models of the NaPi-II sodium-phosphate cotransporters.
Pflugers Arch. 2019 Jan;471(1):43-52. doi: 10.1007/s00424-018-2197-x. Epub 2018 Sep 3.

本文引用的文献

1
Substrate interactions in the human type IIa sodium-phosphate cotransporter (NaPi-IIa).
Am J Physiol Renal Physiol. 2005 May;288(5):F969-81. doi: 10.1152/ajprenal.00293.2004. Epub 2004 Dec 21.
4
Physiological regulation of renal sodium-dependent phosphate cotransporters.
Jpn J Physiol. 2004 Apr;54(2):93-102. doi: 10.2170/jjphysiol.54.93.
5
Cloning, gene structure and dietary regulation of the type-IIc Na/Pi cotransporter in the mouse kidney.
Pflugers Arch. 2003 Apr;446(1):106-15. doi: 10.1007/s00424-003-1010-6. Epub 2003 Feb 25.
6
Characterization of a type IIb sodium-phosphate cotransporter from zebrafish (Danio rerio) kidney.
Am J Physiol Renal Physiol. 2003 Apr;284(4):F727-36. doi: 10.1152/ajprenal.00356.2002. Epub 2002 Dec 17.
10
Growth-related renal type II Na/Pi cotransporter.
J Biol Chem. 2002 May 31;277(22):19665-72. doi: 10.1074/jbc.M200943200. Epub 2002 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验