Suppr超能文献

双中心重叠积分的数值处理。

Numerical treatment of two-center overlap integrals.

作者信息

Safouhi Hassan

机构信息

Campus Saint-Jean, University of Alberta 8406, 91 Street, Edmonton, Alberta, T6C 4G9, Canada.

出版信息

J Mol Model. 2006 Jan;12(2):213-20. doi: 10.1007/s00894-005-0020-z. Epub 2005 Aug 27.

Abstract

Among the two-center integrals occurring in the molecular context, the two-center overlap integrals are numerous and difficult to evaluate to a level of high accuracy. The analytical and numerical difficulties arise mainly from the presence of the spherical Bessel integrals in the analytic expressions of these molecular integrals. Different approaches have been used to develop efficient algorithms for the numerical evaluation of the molecular integrals under consideration. These approaches are based on quadrature rules, Levin's u transform, or the epsilon-algorithm of Wynn. In the present work, we use the nonlinear D transformation of Sidi. This transformation is shown to be highly efficient in improving the convergence of highly oscillatory integrals, and it has been applied to molecular multicenter integrals, namely three-center attraction, hybrid, two-, three-, and four-center two-electron Coulomb and exchange integrals over B functions and over Slater-type functions. It is also been shown that when evaluating these molecular multicenter integrals the D transformation is more efficient compared with the methods cited above. It is now proven that the integrand occurring in the analytic expression of the two-center overlap integrals satisfies all the conditions required to apply the D transformation. A highly accurate algorithm based on this transformation is now developed. Special cases are presented and discussed for a better optimization of the algorithm. The numerical results section illustrates clearly the high efficiency of our algorithm.

摘要

在分子环境中出现的双中心积分里,双中心重叠积分数量众多且难以高精度求值。解析和数值方面的困难主要源于这些分子积分解析表达式中存在球贝塞尔积分。已采用不同方法来开发用于所考虑分子积分数值求值的高效算法。这些方法基于求积法则、莱文的u变换或温恩的ε算法。在本工作中,我们使用西迪的非线性D变换。该变换在改善高度振荡积分的收敛性方面被证明非常高效,并且已应用于分子多中心积分,即关于B函数和斯莱特型函数的三中心吸引、混合、双、三及四中心双电子库仑和交换积分。还表明在计算这些分子多中心积分时,D变换比上述方法更高效。现已证明双中心重叠积分解析表达式中出现的被积函数满足应用D变换所需的所有条件。基于此变换开发了一种高精度算法。给出并讨论了特殊情况以更好地优化该算法。数值结果部分清楚地说明了我们算法的高效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验