Peyre Véronique, Lair Virginie, André Virginie, le Maire Guerric, Kragh-Hansen Ulrich, le Maire Marc, Møller Jesper V
Laboratoire d'Electrochimie et Chimie Analytique (UMR 7575), Université Pierre et Marie Curie, 4 place Jussieu, F-75252 Paris Cédex 05, France.
Langmuir. 2005 Sep 13;21(19):8865-75. doi: 10.1021/la0507232.
To evaluate the role of hydrophobic and electrostatic or other polar interactions for protein-ligand binding, we studied the interaction of human serum albumin (HSA) and beta-lactoglobulin with various aliphatic (C10-C14) cationic and zwitterionic detergents. We find that cationic detergents, at levels that do not cause unfolding, interact with a single site on beta-lactoglobulin and with two primary and five to six secondary sites on HSA with an affinity that is approximately the same as that with which zwitterionic (dimethylamineoxide) detergents interact, suggesting the absence of significant electrostatic interactions in the high-affinity binding of these compounds. The binding affinity for all of the groups of compounds was dependent upon hydrocarbon chain length, suggesting the predominant role of hydrophobic forces, supported by polar interactions at the protein surface. A distinct correlation between the binding energy and the propensity for micelle formation within the group of cationic or noncharged (nonionic and zwitterionic) detergents indicated that the critical micellar concentration (CMC) for each of these detergent groups, rather than the absolute length of the hydrocarbon chain, can be used to compare their hydrophobicities during their interaction with protein. Intrinsic fluorescence data suggest that the two primary binding sites on serum albumin for the zwitterionic and cationic compounds are located in the C-terminal part of the albumin molecule, possibly in the Sudlow II binding region. Comparisons with previous binding data on anionic amphiphiles emphasize the important contribution of ion bond formation and other polar interactions in the binding of fatty acids and dodecyl sulfate (SDS) by HSA but not by beta-lactoglobulin. Electrostatic interactions by cationic detergents played a significant role in destabilizing the protein structure at high binding levels, with beta-lactoglobulin being more susceptible to unfolding than HSA. Zwitterionic detergents, in contrast to the cationic detergents, had no tendency to unfold the proteins at high concentrations.
为了评估疏水、静电或其他极性相互作用在蛋白质 - 配体结合中的作用,我们研究了人血清白蛋白(HSA)和β-乳球蛋白与各种脂肪族(C10 - C14)阳离子和两性离子去污剂的相互作用。我们发现,在不会导致蛋白质解折叠的浓度下,阳离子去污剂与β-乳球蛋白上的一个位点相互作用,与HSA上的两个主要位点以及五到六个次要位点相互作用,其亲和力与两性离子(二甲基氧化胺)去污剂的相互作用亲和力大致相同,这表明在这些化合物的高亲和力结合中不存在显著的静电相互作用。所有化合物组的结合亲和力均取决于烃链长度,这表明疏水作用力起主要作用,同时蛋白质表面的极性相互作用也起到支持作用。阳离子或不带电(非离子和两性离子)去污剂组内的结合能与胶束形成倾向之间存在明显的相关性,这表明这些去污剂组各自的临界胶束浓度(CMC),而非烃链的绝对长度,可用于比较它们与蛋白质相互作用时的疏水性。内在荧光数据表明,血清白蛋白上两性离子和阳离子化合物的两个主要结合位点位于白蛋白分子的C末端部分,可能在Sudlow II结合区域。与先前关于阴离子两亲物的结合数据进行比较强调了离子键形成和其他极性相互作用在HSA结合脂肪酸和十二烷基硫酸钠(SDS)时的重要贡献,但β-乳球蛋白结合时并非如此。在高结合水平下,阳离子去污剂的静电相互作用在使蛋白质结构不稳定方面起重要作用,β-乳球蛋白比HSA更容易发生解折叠。相比之下,两性离子去污剂在高浓度下没有使蛋白质解折叠的倾向。