Hwang Jae-Ung, Gu Ying, Lee Yong-Jik, Yang Zhenbiao
College of Life Sciences, China Agricultural University, Beijing 100094, China.
Mol Biol Cell. 2005 Nov;16(11):5385-99. doi: 10.1091/mbc.e05-05-0409. Epub 2005 Sep 7.
Oscillation regulates a wide variety of processes ranging from chemotaxis in Dictyostelium through segmentation in vertebrate development to circadian rhythms. Most studies on the molecular mechanisms underlying oscillation have focused on processes requiring a rhythmic change in gene expression, which usually exhibit a periodicity of >10 min. Mechanisms that control oscillation with shorter periods (<10 min), presumably independent of gene expression changes, are poorly understood. Oscillatory pollen tube tip growth provides an excellent model to investigate such mechanisms. It is well established that ROP1, a Rho-like GTPase from plants, plays an essential role in polarized tip growth in pollen tubes. In this article, we demonstrate that tip-localized ROP1 GTPase activity oscillates in the same frequency with growth oscillation, and leads growth both spatially and temporally. Tip growth requires the coordinate action of two ROP1 downstream pathways that promote the accumulation of tip-localized Ca2+ and actin microfilaments (F-actin), respectively. We show that the ROP1 activity oscillates in a similar phase with the apical F-actin but apparently ahead of tip-localized Ca2+. Furthermore, our observations support the hypothesis that the oscillation of tip-localized ROP activity and ROP-dependent tip growth in pollen tubes is modulated by the two temporally coordinated downstream pathways, an early F-actin assembly pathway and a delayed Ca2+ gradient-forming pathway. To our knowledge, our report is the first to demonstrate the oscillation of Rho GTPase signaling, which may be a common mechanism underlying the oscillation of actin-dependent processes such as polar growth, cell movement, and chemotaxis.
振荡调节着从盘基网柄菌的趋化作用到脊椎动物发育中的体节形成,再到昼夜节律等各种各样的过程。大多数关于振荡潜在分子机制的研究都集中在需要基因表达有节律变化的过程上,这些过程通常表现出大于10分钟的周期性。控制较短周期(<10分钟)振荡的机制,推测与基因表达变化无关,目前了解甚少。振荡的花粉管顶端生长为研究此类机制提供了一个绝佳模型。众所周知,ROP1是一种来自植物的类Rho GTP酶,在花粉管的极性顶端生长中起着至关重要的作用。在本文中,我们证明顶端定位的ROP1 GTP酶活性与生长振荡以相同频率振荡,并在空间和时间上引导生长。顶端生长需要两条ROP1下游途径的协同作用,这两条途径分别促进顶端定位的Ca2+和肌动蛋白微丝(F-肌动蛋白)的积累。我们发现ROP1活性与顶端F-肌动蛋白以相似的相位振荡,但明显领先于顶端定位的Ca2+。此外,我们的观察结果支持这样一种假设,即花粉管中顶端定位的ROP活性振荡和ROP依赖的顶端生长受两条时间上协调的下游途径调节,一条是早期F-肌动蛋白组装途径,另一条是延迟的Ca2+梯度形成途径。据我们所知,我们的报告首次证明了Rho GTP酶信号的振荡,这可能是肌动蛋白依赖过程如极性生长、细胞运动和趋化作用振荡的共同机制。