Nakatsuji Satoru, Nambu Yusuke, Tonomura Hiroshi, Sakai Osamu, Jonas Seth, Broholm Collin, Tsunetsugu Hirokazu, Qiu Yiming, Maeno Yoshiteru
Department of Physics, Kyoto University, Kyoto 606-8502, Japan.
Science. 2005 Sep 9;309(5741):1697-700. doi: 10.1126/science.1114727.
As liquids crystallize into solids on cooling, spins in magnets generally form periodic order. However, three decades ago, it was theoretically proposed that spins on a triangular lattice form a liquidlike disordered state at low temperatures. Whether or not a spin liquid is stabilized by geometrical frustration has remained an active point of inquiry ever since. Our thermodynamic and neutron measurements on NiGa2S4, a rare example of a two-dimensional triangular lattice antiferromagnet, demonstrate that geometrical frustration stabilizes a low-temperature spin-disordered state with coherence beyond the two-spin correlation length. Spin liquid formation may be an origin of such behavior.
随着液体冷却结晶成固体,磁体中的自旋通常会形成周期性有序状态。然而,三十年前,从理论上提出,三角形晶格上的自旋在低温下会形成类似液体的无序状态。从那时起,几何阻挫是否能稳定自旋液体一直是一个活跃的研究点。我们对二维三角形晶格反铁磁体的罕见例子NiGa2S4进行的热力学和中子测量表明,几何阻挫稳定了一种低温自旋无序状态,其相干性超出了两自旋关联长度。自旋液体的形成可能是这种行为的一个起源。