Suppr超能文献

在还原型叶酸载体下调的抗叶酸耐药人白血病细胞中,通过抑制性磷酸化导致Sp1功能丧失。

Loss of Sp1 function via inhibitory phosphorylation in antifolate-resistant human leukemia cells with down-regulation of the reduced folate carrier.

作者信息

Stark Michal, Assaraf Yehuda G

机构信息

Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.

出版信息

Blood. 2006 Jan 15;107(2):708-15. doi: 10.1182/blood-2005-07-2743. Epub 2005 Sep 13.

Abstract

The reduced folate carrier (RFC) is the dominant influx transporter for antifolates. A major mechanism of antifolate resistance is loss of RFC (SLC19A1) gene expression due to decreased GC-box-dependent transcription. However, despite the poor GC-box binding in multiple antifolate-resistant cell lines, normal Sp1 levels were retained. Here we explored the post-translational modifications that may disrupt Sp1 function. Phospho-affinity purification of nuclear proteins revealed that resistant cells contained approximately 8-fold more phosphorylated Sp1 than parental cells; treatment of nuclear proteins from these cells with alkaline phosphatase restored GC-box binding. As protein kinase A phosphorylates Sp1, resistant cells were treated with various cAMP-reactive agents, revealing no apparent effect on GC-box binding except for the general phosphodiesterase inhibitor IBMX. As cGMP levels also may be affected by IBMX, resistant cells were treated with 8-pCPT-cGMP, resulting in the complete restoration of GC-box binding, luciferase reporter activity, and RFC mRNA levels. This restoration was abolished in the presence of the protein phosphatase 2A inhibitor (PP2A) okadaic acid. Importantly, whereas resistant cells showed multiple phosphorylated Sp1 forms barely detectable in parental cells, treatment with 8-pCPT-cGMP resulted in their elimination; this disappearance, however, was prevented by the copresence of okadaic acid. These findings provide the first evidence that loss of RFC gene expression in antifolate-resistant cells is associated with an inhibitory Sp1 phosphorylation that can be eliminated by a cGMP-dependent activation of PP2A.

摘要

还原型叶酸载体(RFC)是抗叶酸药物的主要内流转运体。抗叶酸耐药的一个主要机制是由于GC盒依赖性转录减少导致RFC(SLC19A1)基因表达缺失。然而,尽管在多个抗叶酸耐药细胞系中GC盒结合能力较差,但Sp1水平仍保持正常。在此,我们探究了可能破坏Sp1功能的翻译后修饰。对核蛋白进行磷酸亲和纯化发现,耐药细胞中磷酸化Sp1的含量比亲本细胞多约8倍;用碱性磷酸酶处理这些细胞的核蛋白可恢复GC盒结合能力。由于蛋白激酶A可使Sp1磷酸化,我们用各种cAMP反应性试剂处理耐药细胞,结果发现除了通用磷酸二酯酶抑制剂异丁基甲基黄嘌呤(IBMX)外,对GC盒结合没有明显影响。由于cGMP水平也可能受IBMX影响,我们用8 - pCPT - cGMP处理耐药细胞,结果导致GC盒结合、荧光素酶报告基因活性和RFC mRNA水平完全恢复。在存在蛋白磷酸酶2A抑制剂冈田酸的情况下,这种恢复被消除。重要的是,耐药细胞显示出在亲本细胞中几乎检测不到的多种磷酸化Sp1形式,而用8 - pCPT - cGMP处理可使其消失;然而,冈田酸的同时存在可阻止这种消失。这些发现提供了首个证据,即抗叶酸耐药细胞中RFC基因表达缺失与抑制性Sp1磷酸化有关,而这种磷酸化可通过cGMP依赖性激活蛋白磷酸酶2A来消除。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验