Osada Hirotaka, Tatematsu Yoshio, Sugito Nobuyoshi, Horio Yoshitsugu, Takahashi Takashi
Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan.
Mol Carcinog. 2005 Dec;44(4):233-41. doi: 10.1002/mc.20135.
We previously reported silencing of the TGF-beta type II receptor gene (TGFbetaRII), involving histone deacetylation, instead of DNA methylation (DNA-Me). Because different histone modifications may play crucial roles in the epigenetic alterations, we further studied links with silencing of the TGFbetaRII gene promoter in six lung cancer cell lines. ChIP assays demonstrated three chromatin patterns for this gene silencing (Pattern I: histone H3 acetylation (H3-Ac)(+/-)/histone H3 lysine 4 methylation (H3K4-Me)(+)/DNA-Me(-), Pattern II; H3-Ac(-)/H3K4-Me(+/-)/DNA-Me(-), and Pattern III; H3-Ac(-)/H3K4-Me(-)/DNA-Me(+)), indicating possible progressive alterations with H3K4-Me alteration. With exposure to a histone deacetylase inhibitor (HDAC-I), trichostatin A, cell lines with the pattern II demonstrated strong and persistent induction of TGFbetaRII expression, while those with the pattern III showed only weak or no induction. ACC-LC-91 cell line, one of the pattern II examples demonstrated strong and continuous induction of H3K4-Me similar to TGFbetaRII expression. In contrast, ACC-LC-176 with the pattern III showed only weak and transient induction of H3K4-Me, similar to TGFbetaRII expression. Treatment with 5-aza-2'-deoxycytidine (5aza-dC) in addition to HDAC-I resulted in strong and continuous induction of TGFbetaRII expression and H3K4-Me in ACC-LC-176, although 5aza-dC alone was without such effects. In ACC-LC-91, both H3-Ac and H3K4-Me were promptly and simultaneously induced by HDAC-I, and similarly inhibited by wortmannin, a PI3K family inhibitor, together with TGFbetaRII induction. These findings suggested progressive alterations of chromatin configuration including H3K4-Me alteration in TGFbetaRII gene silencing. A possible involvement of a wortmannin-sensitive kinase in histone modification was also suggested.
我们之前报道过,转化生长因子βⅡ型受体基因(TGFbetaRII)的沉默涉及组蛋白去乙酰化,而非DNA甲基化(DNA-Me)。由于不同的组蛋白修饰可能在表观遗传改变中起关键作用,我们进一步研究了六种肺癌细胞系中TGFbetaRII基因启动子沉默的相关情况。染色质免疫沉淀(ChIP)分析显示,该基因沉默存在三种染色质模式(模式I:组蛋白H3乙酰化(H3-Ac)(+/-)/组蛋白H3赖氨酸4甲基化(H3K4-Me)(+)/DNA-Me(-);模式II:H3-Ac(-)/H3K4-Me(+/-)/DNA-Me(-);模式III:H3-Ac(-)/H3K4-Me(-)/DNA-Me(+)),表明随着H3K4-Me的改变可能存在渐进性变化。用组蛋白去乙酰化酶抑制剂(HDAC-I)曲古抑菌素A处理后,模式II的细胞系显示出TGFbetaRII表达的强烈且持续诱导,而模式III的细胞系仅显示出微弱诱导或无诱导。模式II的ACC-LC-91细胞系显示出与TGFbetaRII表达相似的H3K4-Me的强烈且持续诱导。相反,模式III的ACC-LC-176仅显示出与TGFbetaRII表达相似的H3K4-Me的微弱且短暂诱导。除HDAC-I外,用5-氮杂-2'-脱氧胞苷(5aza-dC)处理导致ACC-LC-176中TGFbetaRII表达和H3K4-Me的强烈且持续诱导,尽管单独使用5aza-dC没有这种效果。在ACC-LC-91中,HDAC-I可迅速同时诱导H3-Ac和H3K4-Me,并且与TGFbetaRII诱导一样,被PI3K家族抑制剂渥曼青霉素同样抑制。这些发现提示在TGFbetaRII基因沉默中包括H3K4-Me改变在内的染色质构型的渐进性变化。还提示渥曼青霉素敏感激酶可能参与组蛋白修饰。