Yoshida Yasuo, Ganguly Soumya, Bush C Allen, Cisar John O
Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
Mol Microbiol. 2005 Oct;58(1):244-56. doi: 10.1111/j.1365-2958.2005.04820.x.
The cell wall polysaccharides of certain oral streptococci function as receptors for the lectin-like surface adhesins on other members of the oral biofilm community. Recognition of these receptor polysaccharides (RPS) depends on the presence of a host-like motif, either GalNAcbeta1-3Gal (Gn) or Galbeta1-3GalNAc (G), within the oligosaccharide repeating units of different RPS structural types. Type 2Gn RPS of Streptococcus gordonii 38 and type 2G RPS of Streptococcus oralis J22 are composed of heptasaccharide repeats that are identical except for their host-like motifs. In the current investigation, the genes for the glycosyltransferases that synthesize these motifs were identified by high-resolution nuclear magnetic resonance (NMR) analysis of genetically altered polysaccharides. RPS production was switched from type 2Gn to 2G by replacing wefC and wefD in the type 2Gn gene cluster of S. gordonii 38 with wefF and wefG from the type 2G cluster of S. oralis J22. Disruption of either wefC or wefF abolished cell surface RPS production. In contrast, disruption of wefD in the type 2Gn cluster or wefG in the type 2G cluster eliminated beta-GalNAc from the Gn motif or beta-Gal from the G motif, resulting in mutant polysaccharides with hexa- rather than heptasaccharide subunits. The mutant polysaccharides reacted like wild-type RPS with rabbit antibodies against type 2Gn or 2G RPS but were inactive as co-aggregation receptors. Additional mutant polysaccharides with GalNAcbeta1-3GalNAc or Galbeta1-3Gal recognition motifs were engineered by replacing wefC in the type 2Gn cluster with wefF or wefF in the type 2G cluster with wefC respectively. The reactions of these genetically modified polysaccharides as antigens and receptors provide further insight into the structural basis of RPS function.
某些口腔链球菌的细胞壁多糖可作为口腔生物膜群落中其他成员上凝集素样表面黏附素的受体。对这些受体多糖(RPS)的识别取决于不同RPS结构类型的寡糖重复单元中是否存在类似宿主的基序,即N-乙酰半乳糖胺β1-3半乳糖(Gn)或半乳糖β1-3N-乙酰半乳糖胺(G)。戈登氏链球菌38的2型Gn RPS和口腔链球菌J22的2型G RPS由七糖重复序列组成,除了它们类似宿主的基序外,其余部分相同。在当前研究中,通过对基因改造多糖的高分辨率核磁共振(NMR)分析,鉴定了合成这些基序的糖基转移酶基因。通过用口腔链球菌J22的2型G基因簇中的wefF和wefG替换戈登氏链球菌38的2型Gn基因簇中的wefC和wefD,将RPS的产生从2型Gn转换为2型G。wefC或wefF的破坏消除了细胞表面RPS的产生。相反,2型Gn基因簇中的wefD或2型G基因簇中的wefG的破坏分别从Gn基序中消除了β-N-乙酰半乳糖胺或从G基序中消除了β-半乳糖,导致突变多糖具有六糖而非七糖亚基。突变多糖与抗2型Gn或2型G RPS的兔抗体反应类似野生型RPS,但作为共聚集受体无活性。通过分别用wefF替换2型Gn基因簇中的wefC或用wefC替换2型G基因簇中的wefF,构建了具有N-乙酰半乳糖胺β1-3N-乙酰半乳糖胺或半乳糖β1-3半乳糖识别基序的其他突变多糖。这些基因改造多糖作为抗原和受体的反应为RPS功能的结构基础提供了进一步的见解。