Suppr超能文献

针对大肠杆菌二氢叶酸还原酶的虚拟配体筛选:使用基于物理的方法提高对接富集度。

Virtual ligand screening against Escherichia coli dihydrofolate reductase: improving docking enrichment using physics-based methods.

作者信息

Bernacki Katarzyna, Kalyanaraman Chakrapani, Jacobson Matthew P

机构信息

Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.

出版信息

J Biomol Screen. 2005 Oct;10(7):675-81. doi: 10.1177/1087057105281220. Epub 2005 Sep 16.

Abstract

Motivated by their participation in the McMaster Data-Mining and Docking Competition, the authors developed 2 new computational technologies and applied them to docking against Escherichia coli dihydrofolate reductase: a receptor preparation procedure that incorporates rotamer optimization of side chains and a physics-based rescoring procedure for estimating relative binding affinities of the protein-ligand complexes. Both methods use the same energy function, consisting of the all-atom OPLS-AA force field and a generalized Born solvent model, which treats the protein receptor and small-molecule ligands in a consistent manner. Thus, the energy function is similar to that used in more sophisticated approaches, such as free-energy perturbation and the molecular mechanics Poisson-Boltzmann/surface area, but sampling during the rescoring procedure is limited to simple energy minimization of the ligand. The use of a highly efficient minimization algorithm permitted the authors to apply this rescoring procedure to hundreds of thousands of protein-ligand complexes during the competition, using a modest Linux cluster. To test these methods, they used the 12 competitive inhibitors identified in the training set, plus methotrexate, as positive controls in enrichment studies with both the training and test sets, each containing 50,000 compounds. The key conclusion is that combining the receptor preparation and rescoring methods makes it possible to identify most of the positive controls within the top few tenths of a percent of the rank-ordered training and test set libraries.

摘要

受参与麦克马斯特数据挖掘与对接竞赛的激励,作者开发了两种新的计算技术,并将其应用于针对大肠杆菌二氢叶酸还原酶的对接:一种受体准备程序,该程序纳入了侧链的旋转异构体优化;以及一种基于物理的重打分程序,用于估计蛋白质-配体复合物的相对结合亲和力。两种方法都使用相同的能量函数,该能量函数由全原子OPLS-AA力场和广义玻恩溶剂模型组成,它以一致的方式处理蛋白质受体和小分子配体。因此,该能量函数与更复杂的方法(如自由能微扰和分子力学泊松-玻尔兹曼/表面积方法)中使用的能量函数相似,但在重打分过程中的采样仅限于配体的简单能量最小化。使用高效的最小化算法使作者能够在竞赛期间使用一个适度的Linux集群,将此重打分程序应用于数十万种蛋白质-配体复合物。为了测试这些方法,他们在训练集和测试集(每个集合包含50,000种化合物)的富集研究中,使用了在训练集中鉴定出的12种竞争性抑制剂以及甲氨蝶呤作为阳性对照。关键结论是,将受体准备和重打分方法相结合,使得在排序后的训练集和测试集库的前千分之几中识别出大多数阳性对照成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验