Alpern Steve, Reyniers Diane
Department of Mathematics, The London School of Economics, London WC2A 2AE, UK.
J Theor Biol. 2005 Dec 21;237(4):337-54. doi: 10.1016/j.jtbi.2003.09.021. Epub 2005 Sep 19.
We present a two-sided search model in which individuals from two groups (males and females, employers and workers) would like to form a long-term relationship with a highly ranked individual of the other group, but are limited to individuals who they randomly encounter and to those who also accept them. This article extends the research program, begun in Alpern and Reyniers [1999. J. Theor. Biol. 198, 71-88], of providing a game theoretic analysis for the Kalick-Hamilton [1986. J. Personality Soc. Psychol. 51, 673-682] mating model in which a cohort of males and females of various 'fitness' or 'attractiveness' levels are randomly paired in successive periods and mate if they accept each other. Their model compared two acceptance rules chosen to represent homotypic (similarity) preferences and common (or 'type') preferences. Our earlier paper modeled the first kind by assuming that if a level x male mates with a level y female, both get utility -|x-y|, whereas this paper models the second kind by giving the male utility y and the female utility x. Our model can also be seen as a continuous generalization of the discrete fitness-level game of Johnstone [1997. Behav. Ecol. Sociobiol. 40, 51-59]. We establish the existence of equilibrium strategy pairs, give examples of multiple equilibria, and conditions guaranteeing uniqueness. In all equilibria individuals become less choosy over time, with high fitness individuals pairing off with each other first, leaving the rest to pair off later. This route to assortative mating was suggested by Parker [1983. Mate Choice, Cambridge University Press, Cambridge, pp. 141-164]. If the initial fitness distributions have atoms, then mixed strategy equilibria may also occur. If these distributions are unknown, there are equilibria in which only individuals in the same fitness band are mated, as in the steady-state model of MacNamara and Collins [1990. J. Appl. Prob. 28, 815-827] for the job search problem.
我们提出了一个双边搜索模型,其中来自两组(男性和女性、雇主和工人)的个体希望与另一组中排名较高的个体建立长期关系,但仅限于他们随机遇到的个体以及那些也接受他们的个体。本文扩展了始于阿尔珀恩和雷尼尔斯[1999年。《理论生物学杂志》198卷,第71 - 88页]的研究项目,该项目为卡利克 - 汉密尔顿[1986年。《人格与社会心理学杂志》51卷,第673 - 682页]的交配模型提供博弈论分析,在该模型中,不同“适应度”或“吸引力”水平的一群男性和女性在连续时期内随机配对,如果他们相互接受则交配。他们的模型比较了两个被选来代表同型(相似性)偏好和共同(或“类型”)偏好的接受规则。我们早期的论文通过假设如果一个x级别的男性与一个y级别的女性交配,双方获得的效用为 -|x - y|来对第一种情况进行建模,而本文通过给男性效用y和女性效用x来对第二种情况进行建模。我们的模型也可以被看作是约翰斯通[1997年。《行为生态学与社会生物学》40卷,第51 - 59页]离散适应度水平博弈的连续推广。我们确立了均衡策略对的存在性,给出了多重均衡的例子以及保证唯一性的条件。在所有均衡中,个体随着时间推移变得不那么挑剔,适应度高的个体首先相互配对,其余的个体稍后配对。这种 assortative mating 的途径是由帕克[1983年。《配偶选择》,剑桥大学出版社,剑桥,第141 - 164页]提出的。如果初始适应度分布有原子,那么也可能出现混合策略均衡。如果这些分布未知,存在这样的均衡,即只有相同适应度范围内的个体才会交配,就像麦克纳马拉和柯林斯[1990年。《应用概率杂志》28卷,第815 - 827页]关于求职问题的稳态模型那样。