El-Mansi Mansi
School of Life Sciences, Faculty of Health and Life Sciences, Napier University, Edinburgh, EH10 5DT, Scotland, UK.
Res Microbiol. 2005 Sep;156(8):874-9. doi: 10.1016/j.resmic.2005.04.008. Epub 2005 Jun 16.
During growth of Escherichia coli on acetate, phosphotransacetylase and alpha-ketoglutarate dehydrogenase are in direct competition for their common co-factor, HS-CoA. Such competition is resolved in favour of phosphotransacetylase, thus rendering alpha-ketoglutarate dehydrogenase rate-limiting (controlling) and, in turn, creating a bottleneck at the level of alpha-ketoglutarate in the Krebs cycle. Accumulation of alpha-ketoglutarate is then balanced by its excretion. Addition of pyruvate, glucose or any glycolytic intermediate to acetate-grown culture relieves such a bottleneck by reversing carbon flow through phosphotransacetylase to give acetyl phosphate and much-needed HS-CoA. The urgent need for HS-CoA by the primordial organism might therefore have provided the selective pressure that led to the co-evolution of phosphotransacetylase and the two-malate synthase isoenzymes.
在大肠杆菌利用乙酸盐生长的过程中,磷酸转乙酰酶和α-酮戊二酸脱氢酶会直接竞争它们的共同辅因子HS-CoA。这种竞争以有利于磷酸转乙酰酶的方式得到解决,从而使α-酮戊二酸脱氢酶成为限速(控制)因素,进而在三羧酸循环中α-酮戊二酸水平上形成一个瓶颈。然后,α-酮戊二酸的积累通过其排泄得以平衡。向以乙酸盐培养的培养物中添加丙酮酸、葡萄糖或任何糖酵解中间产物,可通过逆转碳流经磷酸转乙酰酶的过程,生成乙酰磷酸和急需的HS-CoA,从而缓解这种瓶颈。因此,原始生物体对HS-CoA的迫切需求可能提供了导致磷酸转乙酰酶和两种苹果酸合酶同工酶共同进化的选择压力。