Sariego Idalia, Annoura Takeshi, Nara Takeshi, Hashimoto Muneaki, Tsubouchi Akiko, Iizumi Kyoichi, Makiuchi Takashi, Murata Eri, Kita Kiyoshi, Aoki Takashi
Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan.
Parasitol Int. 2006 Mar;55(1):11-6. doi: 10.1016/j.parint.2005.08.001. Epub 2005 Sep 19.
Dihydroorotate dehydrogenase (DHOD) is the fourth enzyme in the de novo pyrimidine biosynthetic pathway and is essential in Trypanosoma cruzi, the parasitic protist causing Chagas' disease. T. cruzi and human DHOD have different biochemical properties, including the electron acceptor capacities and cellular localization, suggesting that T. cruzi DHOD may be a potential chemotherapeutic target against Chagas' disease. Here, we report nucleotide sequence polymorphisms of T. cruzi DHOD genes and the kinetic properties of the recombinant enzymes. T. cruzi Tulahuen strain possesses three DHODgenes: DHOD1 and DHOD2, involved in the pyrimidine biosynthetic (pyr) gene cluster on an 800 and a 1000 kb chromosomal DNA, respectively, and DHOD3, located on an 800 kb DNA. The open reading frames of all three DHOD genes are comprised of 942 bp, and encode proteins of 314 amino acids. The three DHOD genes differ by 26 nucleotides, resulting in replacement of 8 amino acid residues. In contrast, all residues critical for constituting the active site are conserved among the three proteins. Recombinant T. cruzi DHOD1 and DHOD2 expressed in E. coli possess similar enzymatic properties, including optimal pH, optimal temperature, Vmax, and Km for dihydroorotate and fumarate. In contrast, DHOD3 had a higher Vmax and Km for both substrates. Orotate competitively inhibited all three DHOD enzymes to a comparable level. These results suggest that, despite their genetic variations, kinetic properties of the three T. cruziDHODs are conserved. Our findings facilitate further exploitation of T. cruzi DHOD inhibitors, as chemotherapeutic agents against Chagas' disease.
二氢乳清酸脱氢酶(DHOD)是从头嘧啶生物合成途径中的第四个酶,对于引起恰加斯病的寄生原生生物克氏锥虫至关重要。克氏锥虫和人类的DHOD具有不同的生化特性,包括电子受体能力和细胞定位,这表明克氏锥虫DHOD可能是针对恰加斯病的潜在化疗靶点。在此,我们报告了克氏锥虫DHOD基因的核苷酸序列多态性以及重组酶的动力学特性。克氏锥虫图拉亨株拥有三个DHOD基因:DHOD1和DHOD2,分别参与位于800 kb和1000 kb染色体DNA上的嘧啶生物合成(pyr)基因簇,以及位于800 kb DNA上的DHOD3。所有三个DHOD基因的开放阅读框均由942 bp组成,并编码314个氨基酸的蛋白质。这三个DHOD基因有26个核苷酸不同,导致8个氨基酸残基被替换。相比之下,在这三种蛋白质中,构成活性位点的所有关键残基都是保守的。在大肠杆菌中表达的重组克氏锥虫DHOD1和DHOD2具有相似的酶学特性,包括最适pH、最适温度、Vmax以及对二氢乳清酸和富马酸的Km值。相比之下,DHOD3对两种底物的Vmax和Km值更高。乳清酸对所有三种DHOD酶的抑制作用相当。这些结果表明,尽管它们存在基因差异,但三种克氏锥虫DHOD的动力学特性是保守的。我们的发现有助于进一步开发克氏锥虫DHOD抑制剂,作为治疗恰加斯病的化疗药物。