Fleischer Holger, Wann Derek A, Hinchley Sarah L, Borisenko Konstantin B, Lewis James R, Mawhorter Richard J, Robertson Heather E, Rankin David W H
Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany.
Dalton Trans. 2005 Oct 7(19):3221-8. doi: 10.1039/b505287b. Epub 2005 Aug 24.
The molecular structures of Se(SCH(3))(2) and Te(SCH(3))(2) were investigated using gas-phase electron diffraction (GED) and ab initio and DFT geometry optimisations. While parameters involving H atoms were refined using flexible restraints according to the SARACEN method, parameters that depended only on heavy atoms could be refined without restraints. The GED-determined geometric parameters (r(h1)) are: rSe-S 219.1(1), rS-C 183.2(1), rC-H 109.6(4) pm; angleS-Se-S 102.9(3), angleSe-S-C 100.6(2), angleS-C-H (mean) 107.4(5), phiS-Se-S-C 87.9(20), phiSe-S-C-H 178.8(19) degrees for Se(SCH(3))(2), and rTe-S 238.1(2), rS-C 184.1(3), rC-H 110.0(6) pm; angleS-Te-S 98.9(6), angleTe-S-C 99.7(4), angleS-C-H (mean) 109.2(9), phiS-Te-S-C 73.0(48), phiTe-S-C-H 180.1(19) degrees for Te(SCH(3))(2). Ab initio and DFT calculations were performed at the HF, MP2 and B3LYP levels, employing either full-electron basis sets [3-21G(d) or 6-31G(d)] or an effective core potential with a valence basis set [LanL2DZ(d)]. The best fit to the GED structures was achieved at the MP2 level. Differences between GED and MP2 results for rS-C and angleS-Te-S were explained by the thermal population of excited vibrational states under the experimental conditions. All theoretical models agreed that each compound exists as two stable conformers, one in which the methyl groups are on the same side (g(+)g(-) conformer) and one in which they are on different sides (g(+)g(+) conformer) of the S-Y-S plane (Y = Se, Te). The conformational composition under the experimental conditions could not be resolved from the GED data. Despite GED R-factors and ab initio and DFT energies favouring the g(+)g(+) conformer, it is likely that both conformers are present, for Se(SCH(3))(2) as well as for Te(SCH(3))(2).
利用气相电子衍射(GED)以及从头算和密度泛函理论(DFT)几何优化方法对硒代二甲基硫醚(Se(SCH₃)₂)和碲代二甲基硫醚(Te(SCH₃)₂)的分子结构进行了研究。涉及氢原子的参数根据SARACEN方法使用灵活的约束条件进行精修,而仅依赖于重原子的参数则可以无约束地进行精修。由GED确定的几何参数(r(h1))为:对于Se(SCH₃)₂,rSe-S为219.1(1)、rS-C为183.2(1)、rC-H为109.6(4)皮米;∠S-Se-S为102.9(3)、∠Se-S-C为100.6(2)、∠S-C-H(平均值)为107.4(5)、φS-Se-S-C为87.9(20)、φSe-S-C-H为178.8(19)度;对于Te(SCH₃)₂,rTe-S为238.1(2)、rS-C为184.1(3)、rC-H为110.0(6)皮米;∠S-Te-S为98.9(6)、∠Te-S-C为99.7(4)、∠S-C-H(平均值)为109.2(9)、φS-Te-S-C为73.0(48)、φTe-S-C-H为180.1(19)度。从头算和DFT计算在HF、MP2和B3LYP水平上进行,采用全电子基组[3 - 21G(d)或6 - 31G(d)]或带有价基组的有效核势[LanL2DZ(d)]。在MP2水平上实现了与GED结构的最佳拟合。实验条件下激发振动态的热布居解释了GED和MP2结果在rS-C和∠S-Te-S方面的差异。所有理论模型均认为每种化合物均以两种稳定构象异构体存在,一种是甲基位于S - Y - S平面(Y = Se、Te)同一侧的(g(+)g(-)构象异构体),另一种是甲基位于不同侧的(g(+)g(+)构象异构体)。实验条件下的构象组成无法从GED数据中分辨出来。尽管GED的R因子以及从头算和DFT能量都倾向于g(+)g(+)构象异构体,但对于Se(SCH₃)₂以及Te(SCH₃)₂来说,很可能两种构象异构体都存在。