Suppr超能文献

泰国鱼露中总氮含量、pH值、密度、折射率和糖度的测定及其通过具有搜索组合移动窗口偏最小二乘法的近红外光谱法进行分类。

Determination of total nitrogen content, pH, density, refractive index, and brix in Thai fish sauces and their classification by near-infrared spectroscopy with searching combination moving window partial least squares.

作者信息

Ritthiruangdej Pitiporn, Kasemsumran Sumaporn, Suwonsichon Thongchai, Haruthaithanasan Vichai, Thanapase Warunee, Ozaki Yukihiro

机构信息

Department of Chemistry and Research Center for Near-Infrared Spectroscopy, School of Science and Technology, Kwansei-Gakuin University, Sanda, Hyogo, 669-1337, Japan.

出版信息

Analyst. 2005 Oct;130(10):1439-45. doi: 10.1039/b507077e. Epub 2005 Sep 1.

Abstract

Near-infrared (NIR) transflectance spectra in the region of 1100-2500 nm were measured for 100 Thai fish sauces. Quantitative analyses of total nitrogen (TN) content, pH, refractive index, density and brix in the Thai fish sauces and their qualitative analyses were carried out by multivariate analyses with the aid of wavelength interval selection method named searching combination moving window partial least squares (SCMWPLS). The optimized informative region for TN selected by SCMWPLS was the region of 2264-2428 nm. A PLS calibration model, which used this region, yielded the lowest root mean square error of prediction (RMSEP) of 0.100% w/v for the PLS factor of 5. This prediction result is significantly better than those obtained by using the whole spectral region or informative regions selected by moving window partial least squares regression (MWPLSR). As for pH, density, refractive index and brix, the 1698-1722, and 2222-2258 nm regions, the 1358-1438 nm region, the 1774-1846, and 2078-2114 nm regions, and the 1322-1442, and 2000-2076 nm regions were selected by SCMWPLS as the optimized regions. The best prediction results were always obtained by use of the optimized regions selected by SCMWPLS. The lowest RMSEP for pH, density, refractive index and brix were 0.170, 0.007 g cm(-3), 0.0079 and 0.435 degrees Brix, respectively. Qualitative models were developed by using four supervised pattern recognitions, linear discriminant analysis (LDA), factor analysis-linear discriminant analysis (FA-LDA), soft independent modeling of class analog (SIMCA), and K neareat neighbors (KNN) for the optimized combination of informative regions of the NIR spectra of fish sauces to classify fish sauces into three groups based on TN. All the developed models can potentially classify the fish sauces with the correct classification rate of more than 82%, and the KNN classified model has the highest correct classification rate (95%). The present study has demonstrated that NIR spectroscopy combined with SCMWPLS is powerful for both the quantitative and qualitative analyses of Thai fish sauces.

摘要

对100份泰国鱼露在1100 - 2500 nm区域的近红外(NIR)漫反射光谱进行了测量。借助名为搜索组合移动窗口偏最小二乘法(SCMWPLS)的波长区间选择方法,对泰国鱼露中的总氮(TN)含量、pH值、折射率、密度和糖度进行了定量分析,并对其进行了定性分析。通过SCMWPLS选择的TN优化信息区域为2264 - 2428 nm。使用该区域的偏最小二乘(PLS)校准模型,对于5个PLS因子,预测的均方根误差(RMSEP)最低为0.100% w/v。该预测结果明显优于使用整个光谱区域或通过移动窗口偏最小二乘回归(MWPLSR)选择的信息区域所获得的结果。对于pH值、密度、折射率和糖度,通过SCMWPLS选择的优化区域分别为1698 - 1722和2222 - 2258 nm区域、1358 - 1438 nm区域、1774 - 1846和2078 - 2114 nm区域以及1322 - 1442和2000 - 2076 nm区域。使用SCMWPLS选择的优化区域总能获得最佳预测结果。pH值、密度、折射率和糖度的最低RMSEP分别为0.170、0.007 g/cm³、0.0079和0.435°Bx。通过使用四种监督模式识别方法,即线性判别分析(LDA)、因子分析 - 线性判别分析(FA - LDA)、类模拟软独立建模(SIMCA)和K近邻(KNN),针对鱼露近红外光谱信息区域的优化组合建立了定性模型,以便根据TN将鱼露分为三组。所有建立的模型都有可能以超过82%的正确分类率对鱼露进行分类,并且KNN分类模型具有最高的正确分类率(95%)。本研究表明,近红外光谱结合SCMWPLS在泰国鱼露的定量和定性分析方面都很强大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验