LESS:一种基于模型的稀疏子空间分类器。

LESS: a model-based classifier for sparse subspaces.

作者信息

Veenman Cor J, Tax David M J

机构信息

Department of Mediamatics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031, 2600 GA, Delft, The Netherlands.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2005 Sep;27(9):1496-500. doi: 10.1109/TPAMI.2005.182.

Abstract

In this paper, we specifically focus on high-dimensional data sets for which the number of dimensions is an order of magnitude higher than the number of objects. From a classifier design standpoint, such small sample size problems have some interesting challenges. The first challenge is to find, from all hyperplanes that separate the classes, a separating hyperplane which generalizes well for future data. A second important task is to determine which features are required to distinguish the classes. To attack these problems, we propose the LESS (Lowest Error in a Sparse Subspace) classifier that efficiently finds linear discriminants in a sparse subspace. In contrast with most classifiers for high-dimensional data sets, the LESS classifier incorporates a (simple) data model. Further, by means of a regularization parameter, the classifier establishes a suitable trade-off between subspace sparseness and classification accuracy. In the experiments, we show how LESS performs on several high-dimensional data sets and compare its performance to related state-of-the-art classifiers like, among others, linear ridge regression with the LASSO and the Support Vector Machine. It turns out that LESS performs competitively while using fewer dimensions.

摘要

在本文中,我们特别关注那些维度数量比对象数量高一个数量级的高维数据集。从分类器设计的角度来看,这类小样本规模问题存在一些有趣的挑战。第一个挑战是从所有分隔类别的超平面中找到一个能对未来数据进行良好泛化的分隔超平面。第二项重要任务是确定区分这些类所需的特征。为了解决这些问题,我们提出了LESS(稀疏子空间中最低误差)分类器,它能在稀疏子空间中高效地找到线性判别式。与大多数针对高维数据集的分类器不同,LESS分类器纳入了一个(简单的)数据模型。此外,通过一个正则化参数,该分类器在子空间稀疏性和分类准确性之间建立了适当的权衡。在实验中,我们展示了LESS在几个高维数据集上的表现,并将其性能与相关的最先进分类器进行比较,比如带LASSO的线性岭回归和支持向量机等。结果表明,LESS在使用更少维度的情况下仍具有竞争力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索