Suppr超能文献

一种微管结合型Rho鸟苷酸交换因子在非洲爪蟾胚胎会聚延伸过程中控制细胞形态。

A microtubule-binding Rho-GEF controls cell morphology during convergent extension of Xenopus laevis.

作者信息

Kwan Kristen M, Kirschner Marc W

机构信息

Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Development. 2005 Oct;132(20):4599-610. doi: 10.1242/dev.02041. Epub 2005 Sep 21.

Abstract

During Xenopus development, convergent extension movements mediated by cell intercalation drive axial elongation. While many genes required for convergent extension have been identified, little is known of regulation of the cytoskeleton during these cell movements. Although microtubules are required for convergent extension, this applies only to initial stages of gastrulation, between stages 10 and 10.5. To examine the cytoskeleton more directly during convergent extension, we visualized actin and microtubules simultaneously in live explants using spinning disk confocal fluorescence microscopy. Microtubule depolymerization by nocodazole inhibits lamellipodial protrusions and cell-cell contact, thereby inhibiting convergent extension. However, neither taxol nor vinblastine, both of which block microtubule dynamics while stabilizing a polymer form of tubulin, inhibits lamellipodia or convergent extension. This suggests an unusual explanation: the mass of polymerized tubulin, not dynamics of the microtubule cytoskeleton, is crucial for convergent extension. Because microtubule depolymerization elicits striking effects on actin-based protrusions, the role of Rho-family GTPases was tested. The effects of nocodazole are partially rescued using dominant negative Rho, Rho-kinase inhibitor, or constitutively active Rac, suggesting that microtubules regulate small GTPases, possibly via a guanine-nucleotide exchange factor. We cloned full-length XLfc, a microtubule-binding Rho-GEF. Nucleotide exchange activity of XLfc is required for nocodazole-mediated inhibition of convergent extension; constitutively active XLfc recapitulates the effects of microtubule depolymerization. Morpholino knockdown of XLfc abrogates the ability of nocodazole to inhibit convergent extension. Therefore, we believe that XLfc is a crucial regulator of cell morphology during convergent extension, and microtubules limit its activity through binding to the lattice.

摘要

在非洲爪蟾发育过程中,由细胞插入介导的汇聚延伸运动驱动轴伸长。虽然已经鉴定出许多汇聚延伸所需的基因,但对于这些细胞运动过程中细胞骨架的调节知之甚少。尽管微管是汇聚延伸所必需的,但这仅适用于原肠胚形成的初始阶段,即10期到10.5期之间。为了在汇聚延伸过程中更直接地检查细胞骨架,我们使用转盘共聚焦荧光显微镜在活外植体中同时观察肌动蛋白和微管。诺考达唑引起的微管解聚抑制片状伪足突出和细胞间接触,从而抑制汇聚延伸。然而,紫杉醇和长春碱都不会抑制片状伪足或汇聚延伸,它们在稳定微管蛋白聚合物形式的同时阻断微管动力学。这提示了一种不同寻常的解释:聚合微管蛋白的质量而非微管细胞骨架的动力学对汇聚延伸至关重要。因为微管解聚对基于肌动蛋白的突出产生显著影响,所以对Rho家族GTP酶的作用进行了测试。使用显性负性Rho、Rho激酶抑制剂或组成型活性Rac可部分挽救诺考达唑的作用,这表明微管可能通过鸟嘌呤核苷酸交换因子调节小GTP酶。我们克隆了全长XLfc,一种微管结合的Rho-GEF。诺考达唑介导的对汇聚延伸的抑制需要XLfc的核苷酸交换活性;组成型活性XLfc重现了微管解聚的作用。XLfc的吗啉代敲低消除了诺考达唑抑制汇聚延伸的能力。因此,我们认为XLfc是汇聚延伸过程中细胞形态的关键调节因子,微管通过与晶格结合来限制其活性。

相似文献

1
A microtubule-binding Rho-GEF controls cell morphology during convergent extension of Xenopus laevis.
Development. 2005 Oct;132(20):4599-610. doi: 10.1242/dev.02041. Epub 2005 Sep 21.
3
Distinct functions of Rho and Rac are required for convergent extension during Xenopus gastrulation.
Dev Biol. 2003 Jul 15;259(2):318-35. doi: 10.1016/s0012-1606(03)00206-9.
5
WGEF activates Rho in the Wnt-PCP pathway and controls convergent extension in Xenopus gastrulation.
EMBO J. 2008 Feb 20;27(4):606-17. doi: 10.1038/emboj.2008.9. Epub 2008 Feb 7.
6
Rac1 is a novel interactor of Drosophila guanine nucleotide exchange factor GEFmeso.
Mol Cell Biochem. 2015 Jun;404(1-2):259-62. doi: 10.1007/s11010-015-2385-3. Epub 2015 Mar 10.
7
GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA.
Mol Biol Cell. 2008 May;19(5):2147-53. doi: 10.1091/mbc.e07-12-1269. Epub 2008 Feb 20.
10
Microtubule-dependent regulation of Rho GTPases during internalisation of Yersinia pseudotuberculosis.
FEBS Lett. 2003 Jan 2;533(1-3):35-41. doi: 10.1016/s0014-5793(02)03745-6.

引用本文的文献

1
Is Axis Definition a Fluctuation-Based Process Picking Up External Cues?
J Dev Biol. 2025 Jul 17;13(3):24. doi: 10.3390/jdb13030024.
3
Convergent extension in the amphibian, Xenopus laevis.
Curr Top Dev Biol. 2020;136:271-317. doi: 10.1016/bs.ctdb.2019.11.013. Epub 2019 Dec 27.
4
Convergent extension in mammalian morphogenesis.
Semin Cell Dev Biol. 2020 Apr;100:199-211. doi: 10.1016/j.semcdb.2019.11.002. Epub 2019 Nov 13.
5
Nuclear positioning facilitates amoeboid migration along the path of least resistance.
Nature. 2019 Apr;568(7753):546-550. doi: 10.1038/s41586-019-1087-5. Epub 2019 Apr 3.
6
Microtubules, polarity and vertebrate neural tube morphogenesis.
J Anat. 2016 Jul;229(1):63-74. doi: 10.1111/joa.12468. Epub 2016 Mar 29.
7
Microtubule-associated protein 1b is required for shaping the neural tube.
Neural Dev. 2016 Jan 18;11:1. doi: 10.1186/s13064-015-0056-4.
8
Directional memory arises from long-lived cytoskeletal asymmetries in polarized chemotactic cells.
Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1267-72. doi: 10.1073/pnas.1513289113. Epub 2016 Jan 13.
9
Mechanical strain determines the axis of planar polarity in ciliated epithelia.
Curr Biol. 2015 Nov 2;25(21):2774-2784. doi: 10.1016/j.cub.2015.09.015. Epub 2015 Oct 1.
10
GEF-H1 functions in apical constriction and cell intercalations and is essential for vertebrate neural tube closure.
J Cell Sci. 2014 Jun 1;127(Pt 11):2542-53. doi: 10.1242/jcs.146811. Epub 2014 Mar 28.

本文引用的文献

2
Distinct functions of Rho and Rac are required for convergent extension during Xenopus gastrulation.
Dev Biol. 2003 Jul 15;259(2):318-35. doi: 10.1016/s0012-1606(03)00206-9.
4
Switch-of-function mutants based on morphology classification of Ras superfamily small GTPases.
Cell. 2003 May 2;113(3):315-28. doi: 10.1016/s0092-8674(03)00315-5.
6
Rho GTPases in cell biology.
Nature. 2002 Dec 12;420(6916):629-35. doi: 10.1038/nature01148.
7
Regulation of Xenopus embryonic cell adhesion by the small GTPase, rac.
Biochem Biophys Res Commun. 2002 Nov 1;298(3):364-70. doi: 10.1016/s0006-291x(02)02459-2.
8
Convergent extension: the molecular control of polarized cell movement during embryonic development.
Dev Cell. 2002 Jun;2(6):695-706. doi: 10.1016/s1534-5807(02)00197-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验