Suppr超能文献

将生物信息整合到放射治疗计划中的优化工作流程:T1w DCE-MRI的经验

An optimized workflow for the integration of biological information into radiotherapy planning: experiences with T1w DCE-MRI.

作者信息

Neff T, Kiessling F, Brix G, Baudendistel K, Zechmann C, Giesel F L, Bendl R

机构信息

Department of Medical Physics in Radiation Therapy, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.

出版信息

Phys Med Biol. 2005 Sep 7;50(17):4209-23. doi: 10.1088/0031-9155/50/17/020. Epub 2005 Aug 24.

Abstract

Planning of radiotherapy is often difficult due to restrictions on morphological images. New imaging techniques enable the integration of biological information into treatment planning and help to improve the detection of vital and aggressive tumour areas. This might improve clinical outcome. However, nowadays morphological data sets are still the gold standard in the planning of radiotherapy. In this paper, we introduce an in-house software platform enabling us to combine images from different imaging modalities yielding biological and morphological information in a workflow driven approach. This is demonstrated for the combination of morphological CT, MRI, functional DCE-MRI and PET data. Data of patients with a tumour of the prostate and with a meningioma were examined with DCE-MRI by applying pharmacokinetic two-compartment models for post-processing. The results were compared with the clinical plans for radiation therapy. Generated parameter maps give additional information about tumour spread, which can be incorporated in the definition of safety margins.

摘要

由于形态学图像的限制,放射治疗计划制定往往困难重重。新的成像技术能够将生物信息整合到治疗计划中,并有助于提高对重要且侵袭性肿瘤区域的检测。这可能会改善临床结果。然而,如今形态学数据集仍是放射治疗计划制定中的金标准。在本文中,我们介绍了一个内部软件平台,该平台使我们能够以工作流驱动的方式组合来自不同成像模态的图像,从而产生生物和形态学信息。这通过形态学CT、MRI、功能动态对比增强MRI(DCE-MRI)和PET数据的组合得到了证明。对患有前列腺肿瘤和脑膜瘤的患者的数据进行了DCE-MRI检查,并应用药代动力学双室模型进行后处理。将结果与放射治疗的临床计划进行了比较。生成的参数图提供了有关肿瘤扩散的额外信息,这些信息可纳入安全边界的定义中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验