Suppr超能文献

抗病毒RNA干扰疗法:应对移动靶标的新方法

Antiviral RNAi therapy: emerging approaches for hitting a moving target.

作者信息

Leonard J N, Schaffer D V

机构信息

Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-1462, USA.

出版信息

Gene Ther. 2006 Mar;13(6):532-40. doi: 10.1038/sj.gt.3302645.

Abstract

The field of directed RNA interference (RNAi) has rapidly developed into a highly promising approach for specifically down regulating genes to alleviate disease pathology. This technology is especially well-suited to treating viral infections, and numerous examples now illustrate that a wide range of viruses can be inhibited with RNAi, both in vitro and in vivo. One principle that has arisen from this work is that antiviral RNAi therapies must be tailored to the unique life cycle of each pathogen, including the choice of delivery vehicle, route of administration, gene(s) targeted and regulation and duration of RNAi induction. Although effective strategies will be customized to each virus, all such therapies must overcome similar challenges. Importantly, treatment strategies must compensate for the inevitable fact that viral genome sequences evolve extremely rapidly, and computational and bioinformatics approaches may aid in the development of therapies that resist viral escape. Furthermore, all RNAi strategies involve the delivery of nucleic acids to target cells, and all will therefore benefit from the development of enhanced gene design and delivery technologies. Here, we review the substantial progress that has been made towards identifying effective antiviral RNAi targets and discuss strategies for translating these findings into effective clinical therapies.

摘要

定向RNA干扰(RNAi)领域已迅速发展成为一种极具前景的方法,用于特异性下调基因以减轻疾病病理。该技术特别适用于治疗病毒感染,现在有许多例子表明,RNAi在体外和体内均可抑制多种病毒。从这项工作中得出的一个原则是,抗病毒RNAi疗法必须根据每种病原体的独特生命周期进行定制,包括递送载体的选择、给药途径、靶向基因以及RNAi诱导的调节和持续时间。尽管有效的策略将针对每种病毒进行定制,但所有此类疗法都必须克服类似的挑战。重要的是,治疗策略必须应对病毒基因组序列极其快速进化这一不可避免的事实,计算和生物信息学方法可能有助于开发抗病毒逃逸的疗法。此外,所有RNAi策略都涉及将核酸递送至靶细胞,因此所有这些策略都将受益于增强的基因设计和递送技术的发展。在这里,我们回顾了在确定有效的抗病毒RNAi靶点方面取得的重大进展,并讨论了将这些发现转化为有效的临床疗法的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2cc/7091878/7d995f960507/41434_2006_Article_BF3302645_Fig1_HTML.jpg

相似文献

1
Antiviral RNAi therapy: emerging approaches for hitting a moving target.
Gene Ther. 2006 Mar;13(6):532-40. doi: 10.1038/sj.gt.3302645.
2
A review on current status of antiviral siRNA.
Rev Med Virol. 2018 Jul;28(4):e1976. doi: 10.1002/rmv.1976. Epub 2018 Apr 15.
3
Antiviral RNAi: translating science towards therapeutic success.
Pharm Res. 2011 Dec;28(12):2966-82. doi: 10.1007/s11095-011-0549-8. Epub 2011 Aug 9.
4
The potential of RNA interference-based therapies for viral infections.
Curr HIV/AIDS Rep. 2008 Feb;5(1):33-9. doi: 10.1007/s11904-008-0006-4.
6
RNA interference strategies as therapy for respiratory viral infections.
Pediatr Infect Dis J. 2008 Oct;27(10 Suppl):S118-22. doi: 10.1097/INF.0b013e318168b759.
7
Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials.
Early Hum Dev. 2009 Oct;85(10 Suppl):S31-5. doi: 10.1016/j.earlhumdev.2009.08.013. Epub 2009 Oct 14.
8
RNA interference against viruses: strike and counterstrike.
Nat Biotechnol. 2007 Dec;25(12):1435-43. doi: 10.1038/nbt1369.
9
Strategies for silencing human disease using RNA interference.
Nat Rev Genet. 2007 Mar;8(3):173-84. doi: 10.1038/nrg2006.
10
RNA interference: antiviral weapon and beyond.
World J Gastroenterol. 2003 Aug;9(8):1657-61. doi: 10.3748/wjg.v9.i8.1657.

引用本文的文献

5
Non-Cationic RGD-Containing Protein Nanocarrier for Tumor-Targeted siRNA Delivery.
Pharmaceutics. 2021 Dec 17;13(12):2182. doi: 10.3390/pharmaceutics13122182.
7
Small Non-coding RNAs: Do They Encode Answers for Controlling SARS-CoV-2 in the Future?
Front Microbiol. 2020 Sep 18;11:571553. doi: 10.3389/fmicb.2020.571553. eCollection 2020.
8
Nanotheranostics against COVID-19: From multivalent to immune-targeted materials.
J Control Release. 2020 Dec 10;328:112-126. doi: 10.1016/j.jconrel.2020.08.060. Epub 2020 Aug 31.
9
An overview of COVID-19.
J Zhejiang Univ Sci B. 2020 May;21(5):343-360. doi: 10.1631/jzus.B2000083. Epub 2020 May 8.
10
A review on current status of antiviral siRNA.
Rev Med Virol. 2018 Jul;28(4):e1976. doi: 10.1002/rmv.1976. Epub 2018 Apr 15.

本文引用的文献

2
Gene therapy: twenty-first century medicine.
Annu Rev Biochem. 2005;74:711-38. doi: 10.1146/annurev.biochem.74.050304.091637.
3
Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors.
Nat Biotechnol. 2005 Jun;23(6):709-17. doi: 10.1038/nbt1101. Epub 2005 May 22.
4
Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing.
Immunity. 2005 May;22(5):607-19. doi: 10.1016/j.immuni.2005.03.010.
6
Small interfering RNA inhibits SARS-CoV nucleocapsid gene expression in cultured cells and mouse muscles.
FEBS Lett. 2005 Apr 25;579(11):2404-10. doi: 10.1016/j.febslet.2005.02.080.
7
A cellular microRNA mediates antiviral defense in human cells.
Science. 2005 Apr 22;308(5721):557-60. doi: 10.1126/science.1108784.
8
Inhibition of Marburg virus protein expression and viral release by RNA interference.
J Gen Virol. 2005 Apr;86(Pt 4):1181-1188. doi: 10.1099/vir.0.80622-0.
9
Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA.
Nat Biotechnol. 2005 Apr;23(4):457-62. doi: 10.1038/nbt1081. Epub 2005 Mar 20.
10
siRNA targeting the leader sequence of SARS-CoV inhibits virus replication.
Gene Ther. 2005 May;12(9):751-61. doi: 10.1038/sj.gt.3302479.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验